
T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium 1
1

1

Deliverable D3.01

Interim Report on Orchestrator

Platform Implementation

Editor José Bonnet (PTInS)

Contributors J. Bonnet, P. Neves (PTInS), M. McGrath, G. Petralia, V.

Riccobene (INTEL), P. Paglierani (ITALTEL), F. Delli Priscoli, A.

Pietrabissa, F. Liberati, R. Gambuti, V. Suraci, L. Zuccaro, F.

Cimorelli (CRAT), A. Ceselli, G. Grossi, F. Pedersini, M. Trubian

(UNIMI), J. Ferrer Riera, J. Batallé (i2CAT), M. Di Girolamo, P.

Magli, L. Galluppi, G. Coffano (HP), A. Lopez-Ramos (ATOS),

D. Dietrich (LUH)

Version 1.0

Date 22nd December, 2014

Distribution PUBLIC (PU)

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

2

Executive Summary

This deliverable presents the interim results of the four tasks in Work Package 3 of

the T-NOVA project, the Orchestrator Platform Implementation.

Section 2 analyses the interfaces the Orchestrator Platform has with external systems,

which is the focus of Task 3.1. These interfaces have two different functionalities: the

interface with the Network Function Store and the Marketplace has to support a

flexible form of defining new Network Functions and Network Services, while the

other, with the Virtual Network Functions and the Virtual Infrastructure Manager,

needs to support potentially very high data exchange rates. Some of the available

technologies that appear to support these needs have been analysed, but further

experimentation is needed before a definite conclusion can be reached.

Section 3 describes the activities of Task 3.2, Infrastructure Repositories, which is

focused on exposing to the other subsystems of the T-NOVA Orchestrator

infrastructure information available from the Infrastructure Virtualisation

Management (IVM) layer. This information is crucial to the optimal allocation of

resources (see Section 4). OpenStack and OpenDaylight provide important

foundational technologies for the implementation of Cloud Computing and SDN

Controller capabilities within T-NOVA. However, these technologies need to be

appropriately integrated in the overall T-NOVA system by exposing the infrastructural

components they manage and control. This is a combination of utilising default

infrastructural information and further augmenting this information as necessary (e.g.

Enhanced Platform Awareness). Finally the infrastructure information is exposed by

using existing and new interfaces to provide a common view of the infrastructure

landscape to the Orchestrator’s subsystems. An initial prototypical solution has been

designed and is being evaluated with a view to enhancing the solution to meet the

needs and requirements of the various dependent tasks.

Section 4 outlines the activities Task 3.3, Service Mapping, has been focused on.

There are different kinds of algorithms that allow the optimal allocation of resources

to a given Network Service instance, which have been presented and compared.

Additional work remains before choosing and implementing one of those algorithms

(or a small set of) and integrate it (them) into the overall Orchestrator Platform.

Section 5 outlines the work carried out to date in Task 3.4, Service Provisioning,

Monitoring and Management. The core of the Orchestrator Platform will be designed

and implemented in this task, with new services being defined (with the agreed

Service Level Agreements, SLA) and new instances, requested by a Customer at the

Marketplace, through the defined interfaces (Section 2), being provisioned on the

infrastructure described in the repository (Section 3) and according to an optimal

mapping (Section 4). While running, every service instance is monitored, and

eventually scaled or migrated, so that the agreed SLA is not breached, until the limit

date is reached or the customer that requested decided to stop it. The work

presented includes the initial network service descriptor, as the base data model for

service provisioning, monitoring, and management, together with the high-level

functional architecture to be implemented.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

3

Finally, Section 6 presents the conclusions achieved from the work completed so far.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

4

Table of Contents

1. INTRODUCTION ... 7

2. ORCHESTRATOR INTERFACES .. 9

2.1. PROBLEM STATEMENT .. 9
2.1.1. Orchestrator Interfaces Basic Features .. 9
2.1.2. Streaming Data Processing Systems' Architecture .. 10
2.1.3. Orchestrator Southbound Interfaces Requirements and Architecture 10
2.1.4. Orchestrator Northbound Interfaces Requirements and Architecture.............. 13
2.1.5. Orchestrator Interfaces Sub-Problems .. 14

2.2. CANDIDATE SOLUTIONS ... 15
2.2.1. Interface Definition .. 15
2.2.2. Data Streaming ... 16

2.3. SOLUTION RATIONALE ... 20
2.3.1. Interfaces Definition .. 20
2.3.2. Data Streaming ... 21

2.4. RECOMMENDATION .. 22
2.5. RELATIONSHIP AND INTER TASK DEPENDENCIES .. 23
2.6. CONCLUSIONS AND FUTURE WORK ... 24

3. INFRASTRUCTURE REPOSITORY ... 25

3.1. RELEVANT INITIATIVES FOR INFRASTRUCTURE DATA MODELLING ... 26
3.1.1. Redfish .. 26
3.1.2. IPMI ... 26
3.1.3. Desktop Management Interface .. 27
3.1.4. Cloud Infrastructure Management Interface ... 27

3.2. REQUIREMENTS ... 27
3.3. INFRASTRUCTURE DATA ACCESS APPROACHES .. 28
3.4. OPENSTACK INFRASTRUCTURE DATA... 30

3.4.1. Nova DB... 30
3.4.2. Neutron DB ... 34

3.5. INFRASTRUCTURE INFORMATION RETRIEVAL ... 35
3.5.1. Nova API .. 35
3.5.2. Neutron API .. 36
3.5.3. OpenDaylight API ... 36

3.6. T-NOVA SPECIFIC DATA MODEL .. 36
3.7. PROPOSED IMPLEMENTATION PLAN .. 39

3.7.1. EPA Discovery Agent ... 42
3.7.2. EPA Rest Interface .. 42

3.8. NETWORK TOPOLOGY VISUALISATION .. 45
3.9. RELATIONSHIP AND INTER TASK DEPENDENCIES .. 45
3.10. CONCLUSIONS AND FUTURE WORK .. 46

4. SERVICE MAPPING ... 47

4.1. PROBLEM DEFINITION .. 47
4.1.1. Assignment Feasibility .. 51

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

5

4.1.2. Objective Functions Definition ... 52
4.1.3. Reconfiguration Issues .. 53

4.2. PROPOSED APPROACHES ... 53
4.2.1. Flat Approaches... 53
4.2.2. Top Down Approaches .. 53
4.2.3. Bottom Up Approaches ... 54
4.2.4. Multi-stage Network Service Embedding ... 54
4.2.5. VNF Scheduling over an NFV Infrastructure ... 55
4.2.6. Reinforcement Learning Based Approach .. 56
4.2.7. Topology Aware Algorithms ... 58

4.3. OPENSTACK VM DEPLOYMENT MECHANISMS .. 59
4.3.1. Host Grouping ... 59
4.3.2. Nova Scheduler ... 60
4.3.3. Nova Filters ... 60
4.3.4. Nova Weights .. 61

4.4. APPROACH COMPARISON ... 61
4.5. RELATIONSHIP AND INTER TASK DEPENDENCIES .. 63
4.6. CONCLUSION AND FUTURE WORK ... 64

5. SERVICE PROVISIONING, MANAGEMENT AND MONITORING 65

5.1. SERVICE DEFINITION AND BASIC DESCRIPTOR .. 65
5.1.1. ETSI NFV MANO Compliance ... 69
5.1.2. Beyond ETSI NFV MANO.. 69

5.2. ORCHESTRATOR OVERALL ARCHITECTURE .. 71
5.2.1. Service Lifecycle Management ... 73
5.2.2. NS Instances Repository ... 76
5.2.3. NS Monitoring Data Repository ... 76
5.2.4. NS Catalogue ... 76
5.2.5. Implementation Possibilities for the Catalogues ... 76
5.2.6. Infrastructure Repository .. 77
5.2.7. VNF Lifecycle Management .. 77
5.2.8. External Interfaces .. 79
5.2.9. Internal Management and Configuration .. 80

5.3. RELATIONSHIP AND INTER TASK DEPENDENCIES .. 82
5.4. CONCLUSIONS AND FUTURE WORK ... 83

6. CONCLUSIONS .. 84

7. REFERENCES .. 86

8. LIST OF ACRONYMS ... 90

9. ANNEX A: THE ORCHESTRATOR API ... 93

9.1. BASE URL .. 93
9.2. FORMATS AND CONVENTIONS .. 93

9.2.1. Authentication and Authorization .. 93
9.2.2. Pagination ... 93
9.2.3. Querying, Sorting and Filtering ... 94
9.2.4. Timestamps format .. 94

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

6

9.3. STANDARD RETURN CODES AND ERRORS ... 94
9.4. PROPOSED INTERFACES .. 95

9.4.1. Orchestrator and NFStore Interactions ... 95
9.4.2. Orchestrator called by the Marketplace .. 98
9.4.3. Orchestrator- VIM Interactions ... 103
9.4.4. Orchestrator called by the VNF .. 104

10. ANNEX B .. 106

11. ANNEX C: ARCHITECTURE-DATA MODEL RELATION 111

12. ANNEX D: EPA JSON OBJECT... 112

13. ANNEX E: ORCHESTRATOR’S MONITORING COMPONENTS 117

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

7

1. INTRODUCTION

An Orchestrator Platform is a central technology component in enablement of

Network Function Virtualisation (NFV) and Software Defined Networks (SDN) in

carrier grade networks. The Orchestrator plays a key role in enabling performance,

scalability, availability and openness. The adoption and roll out of Virtual Network

Functions (VNFs) by operators has significantly lowered barriers for network Function

Providers (FPs) to enter the telecommunications market, so Telecom Operators

(Telcos) have no alternative but to open their infrastructures to these FPs. All these

changes will have to occur while Telcos still have to reduce their capital expenditures

in the face of an the exponential growth in data traffic while at the same revenues per

megabyte continue to contract. The consequence of this business reality is the urgent

need for infrastructures that are able to support these externally provided VNFs

without jeopardizing the quality and security of current services. It is the

Orchestrator’s role to map new services’ requests onto the existing infrastructure in

an automatic, secure and efficient way, without ever being a business or operational

bottleneck.

Work Package 3 is focused on the implementation, integration and testing of an

Orchestrator Platform. In particular, this interim deliverable outlines the key activities

and findings of the first six months of work towards this goal. The main features of

the T-NOVA Orchestrator Platform that is currently being developed are as follows:

 Handles new or updated VNFs from the Network Function Store (NF Store),

validate them and notifies the Marketplace of their existence and functional

characteristics;

 Has the ability to receive new or updated Network Services (NSs), composed

at the Marketplace level by the Service Provider (SP), from the available VNFs

(including Service Level Agreements (SLA)) in the Marketplace catalogue;

 Receives NS instantiation requests from the Marketplace when the SP’s

customers ‘buy’ that NS;

 Determines the required resources for a NS instance from the composing

VNFs’ descriptors and the available infrastructure;

 Provisions, monitors and manages running NS instances, escalating or

migrating them as required in order to maintain an associated SLA.

These features can only be accomplished by working collaboratively with the other

platform implementation related Work Packages of the T-NOVA project:

 Work Package 4, Infrastructure Virtualisation and Management, for the

allocation of the virtualized infrastructure needed for each of the NS instances

and collection of the dynamic metrics of the running instances;

 Work Package 5, Network Functions, for the NF Store and the VNFs

supporting the proposed use cases;

 Work Package 6, T-NOVA Marketplace, for the NS composition (based on the

existing VNFs) and commercialization.

To support the implementation of these features, the work in the Work Package has

been split into the following Tasks:

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

8

 Task 3.1, Orchestrator Interfaces, is focused in designing, implementing,

testing and documenting the interfaces of the Orchestrator Platform;

 Task 3.2, Infrastructure Repository, gathers data provided by the

infrastructure component controllers i.e. cloud compute and network

resources, and exposes this information via a common set of interfaces to the

Orchestrator;

 Task 3.3, Service Mapping, determines the best mapping between the

requested service instance and the available infrastructure both locally and

across the available NFVI-PoP’s;

 Task 3.4, Service Provisioning, Monitoring and Management, is focused in

designing, implementing, testing and documenting the core features of the

Orchestrator Platform that perform the remaining features described above.

This deliverable is organized in alignment with the tasks, describing in Sections 2 to

5. The key findings and work carried for each one of them is described. Section 6

presents the key conclusions from the work to date.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

9

2. ORCHESTRATOR INTERFACES

This sub-section summarizes the work carried out to date in Task 3.1, Orchestrator

Interfaces.

The initial step was to define the problem statement that Task 3.1 needs to address. A

variety of technologies that may provide a viable a solution to the problem statement

were then investigated. The criteria used to evaluate these technologies in order to

select the most appropriate ones are also presented. Finally, the initial conclusions

identified by the task are presented.

2.1. Problem Statement

Due to its pivotal role in the T-NOVA architecture, the Orchestrator implements

appropriate interfaces to manage the interaction with the layers above and below it.

Specifically, the Orchestrator provides:

1. A Northbound interface to the Marketplace and the Network Function

Store;

2. A Southbound interface to the IVM. This interface will support the exchange

of metrics data generated both at the infrastructure level and at the VNF/NS

level. These metrics have to be collected (and transposed) and communicated

to the Orchestrator in order for the Orchestrator to identify and inform the

IVM what actions are required to be taken so that the NS SLA is maintained.

Flexibility is a key feature in the Northbound Interface due to the need to define new

Network Services (NSs), from existing VNFs, while the Southbound interface needs to

consider carrier grade requirements, which are required to deal with large amounts of

infrastructure data and infrastructure failures.

2.1.1. Orchestrator Interfaces Basic Features

These characteristics can be translated into the following basic set of features [1][2]:

 Significant flexibility, so that new sets of metrics can be defined for

monitoring new NSs and associated SLAs;

 Low latency, to minimize the response time once an error condition is

detected or a threshold condition is exceeded;

 High scalability, in order to accommodate different scenarios for the VNFs

provided;

 High resiliency to (infrastructure) failure or performance degradation (due to

failure or overload), in order that the correct action is still taken even if not all

the information is always available.

These features are present in many systems and are generically known as Streaming

Data Processing Systems (see Figure 2-1 below). Systems with this capability have

been designed and implemented as real-time alternatives to Hadoop [3], the open-

source and batch processing [4] based on the implementation of Google’s

MapReduce [5] algorithm. For these systems, message processing is a fundamental

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

10

paradigm for real-time computation [4], although managing the associated queues

and workers (this is the specific code to process each message) in large scale and

fault tolerant scenarios is very complex.

2.1.2. Streaming Data Processing Systems' Architecture

Figure 2-1 shows the typical architecture of a Streaming Data Processing System.

Figure 2-1: Typical architecture of a Streaming Data Processing System.

The key functional blocks of the architecture are as follows:

 Collect: the point-of-entry module where streaming data is inputted;

 Cache: where different metrics with distinct generation rates are stored;

 Aggregate: where different collected values may be aggregated or enriched.

The data may also be processed in some manner such as the calculation of

running averages;

 Transport: contains the necessary logic regarding the transportation of the

distributed data (depending on different implementation options, data

transport may also occur between other blocks of this architecture);

 Analyse: Data stored in Catalogues (e.g., SLAs) can be compared to received

data;

 Store: in memory or on disk, where data is fetched from;

 Act: Module responsible for the (request for) execution of all actions (scale,

migrate, etc.);

 Provide: this module contains the logic required to push stored data to other

consumer systems.

2.1.3. Orchestrator Southbound Interfaces Requirements and

Architecture

The Orchestrator Southbound Interfaces can be split in two key functions:

 The interface with the VIM;

Collect	 Cache	 Aggregate	

Transport	Analise	

Store	

Act	

Provide	

Catalogs	

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

11

 The interface with the VNFs.

The T-NOVA Orchestrator comprises a real Orchestrator as well as a VNF

Manager. Some VNFs, because of their proprietary nature, performance needs,

etc., may have their own VNF Manager (to be provided by the Function Provider

in parallel to the uploading the VNF to the NF Store), so the interface between

the real Orchestrator and the VNF Manager will be designed accordingly later in

the project.

Both of these interfaces have their own specific requirements, which are follows.

2.1.3.1. Requirements Analysis

The requirements for these interfaces are as follows (see [6]):

 VIM:

1. Reserve or release the required infrastructure needed for a VNF;

2. Allocate, update or release the infrastructure needed for a VNF;

3. Add, update or delete a SW image (usually for a VNF Component);

4. Collect infrastructure utilization data (network, compute and storage;

5. Request infrastructure's metadata from the VIM;

6. Manage the VMs allocated to a given VNF;

7. All the interfaces between the Orchestrator and the VIM SHALL be secure.

 VNFs:

1. All the interfaces between the VNFM and the VNF SHALL be secure;

2. Instantiate a new VNF or terminate one that has already been instantiated;

3. Retrieve the VNF instance run-time information (including performance

metrics);

4. (Re-)Configure a VNF instance;

5. Collect the current state or request a change in the state of a given VNF

(e.g. start, stop, etc.);

6. Request the appropriate scaling (in/out/up/down) metadata.

These requirements are represented in

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

12

Figure 2-2.

Figure 2-2: Requirements for the Interfaces between the Orchestrator and the VIM and

VNFs.

Analysis of the requirements for the interface with the VIM identified the following

observations. Resource reservation and release (#1) has not yet been implemented

within the OpenStack framework, and is therefore not considered for the initial

version. Allocating, updating and releasing the infrastructures required for a VNF (#2)

will have to be designed, since the current default behaviour of OpenStack is not

suitable for VNF/NS deployment. OpenStack's Glance API [7] will be used for the VM

images management (requirement #3). Infrastructure information will be available in

the Infrastructure Repository (see Section 3), which will expose APIs to collect and

request infrastructure metadata (Requirements #4 and #5). The VMs will be managed

using the OpenStack’s Compute API v2 [8] (Requirement #6). Finally, as to securing

all the interfaces (#7), that issue will be addressed when the output from the other

work packages have developed to the point where there is sufficient visibility on any

necessary requirements.

As to the VNFs requirements, work on securing all the interfaces (#1) will start when

the work with the other Work Packages is more mature and needs and potential

impacts can be better understood. Instantiating and terminating a VNF (#2) implies

having the optimal Data Centre and Networking location for all its components (see

Section 4, Service Mapping The VNF Manager requests the required infrastructure

from the VIM as well as starting the VNF, or terminating it and requesting the VIM to

release unused infrastructure as it becomes available. Retrieving the VNF instance

run-time metrics (requirement #3) will probably be transformed into a 'from the VNF

to the VNF Manager' interaction. Reconfiguring a VNF (requirement #4) depends on

an appropriate solution being identified for the interface with VNFs (see Work

Package 5's work). Collecting the current state or request a change in the state of a

given VNF (e.g. start, stop, etc., requirement #5) is a bi-directional interface: the

VNFM may want to request the VNF to change its current state (e.g., from 'running'

to 'stopped'), however the VNF itself may want to communicate its change of state

directly to the VNFM. As with requirement #4, its design also depends on the overall

design approach for the interface with the VNF.

See Section 9, Annex A, for further details on this interface.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

13

2.1.3.2. Proposed Supporting Architecture

As the requirements outlined in section 2.1.3.1 include the need to support event

stream analysis in order to initiate appropriate actions, the project believes that

Streaming Data Processing Systems, with an architecture such as the one shown in

Figure 2-1, are a potential solution to the Orchestrator’s problem.

Some blocks from the high level architecture may be included in an interface layer,

serving the other blocks, more at the core level of the Orchestrator. A possible

separation of those blocks is shown in Figure 2.3.

Figure 2-3: Blocks of a Streaming Data Processing System architecture to be considered

as part of the interface layer.

The Aggregation and Transport blocks may or may not be considered to be part of

the Orchestrator Interfaces module. The reasoning behind this division is as follows:

collection and caching of data must be carried out in close proximity to data

source(s), data aggregation (without any enrichment) may be carried out at this

level if necessary, as well as transportation (this strongly depends on the level of

distribution chosen for the implementation). Since enriching the data, implies adding

dimensions like 'Network Service ID' to the data stream, doing it at this level may

require implementation of too much logic at this layer. It is therefore proposed to

include it only at the core layer.

Acting, depending on the technological details, may or not have limited functionality.

The types of potential functionality include adapting between two different

technologies (undesirable, but possible), or providing authentication/authorisation

services.

2.1.4. Orchestrator Northbound Interfaces Requirements and

Architecture

The Northbound Orchestrator Interfaces pose a different set of challenges, in

comparison to the Southbound Orchestrator Interfaces described previously.

There are two functional entities 'north' of the Orchestrator, which it needs to

interface with:

 The Network Function Store (NF Store):

1. Notifies the Orchestrator about new, updated or deleted VNFs available in

the NF Store;

2. Provides VNF Descriptor (VNFD) upon request;

3. Provides VNF Images upon request;

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

14

 The Marketplace:

1. Notified about new, updated or deleted VNFs available in the NF Store;

2. Notified about (at least part of) the VNFDs of the available VNFs;

3. Notifies the orchestrator about new, updated or deleted Network Services

(NSs);

4. Notifies the orchestrator to instantiate and deploy an existing NS;

5. Notifies the orchestrator about new configuration parameters for an

already deployed NS;

6. Inquiries from the orchestrator about the state of a given NS instance;

7. Notified about changes in state of currently deployed NSs;

8. Notified with currently running NS metrics;

9. Notifies the orchestrator to stop a given NS instance;

These requirements are shown in Figure 2.4.

Figure 2-4: Requirements for the Interfaces between the Orchestrator and the NF Store

and the Marketplace.

These requirements have been previously defined in D2.31 [6]. Simplification of some

requirements is possible, for instance, having the NF Store send the VNFD to the

Orchestrator (requirement #2) together with the notification to the Orchestrator

about a new or updated VNF (requirement #1). The same simplification can be

applied to the interface between the Orchestrator and the Marketplace (also

requirements #1 and #2): the Orchestrator will pass the VNFD (or a sub-set/super-set

of it, according to further analysis that still has to be done) to the Marketplace when

notifying it about new or updated VNFs. Please note that the deletion of a VNF may

not only imply its removal from the catalogue of available VNFs but if it is part of a

NS running instance, its removal when that instance is stopped.

For the Marketplace requirement #3, a good starting point is the ETSI MANO's

NSD. This NSD should include all the metrics involved in the SLA, which will be

interpreted by the Orchestrator (see Section 5).

From the list above, #6 and #7 can be merged, if it is assumed that the Orchestrator

will always push changes in NS status at a higher frequency than is required by the

Marketplace.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

15

There is also another issue with this interface that requires attention: if the VNF

images are too large, it may be necessary to consider storing and retrieving VNF

Component images instead. This makes the Orchestrator more complex, however this

maybe the only suitable solution to address this problem.

See Section 9, Annex A, for further details on this interface.

2.1.5. Orchestrator Interfaces Sub-Problems

The Orchestrator Interfaces' problem can be divided into the following sub-problems:

1. Interface definition: what values to provide or retrieve and to/from where;

2. 'Collect', cache and aggregate/enrich large volumes of data: even having

data pushed into the Orchestrator from the producing systems ('keep data

moving' requirement mentioned in [1]), it must accommodate different data

generation rates and failures, and also aggregations and enrichments of the

collected data, like adding the NSs dimension to the collected metrics, in

order to pass it to the Orchestrator;

3. Store and provide large volumes of data: store the enriched data, for the

Marketplace to consume it;

In the next sub-sections, the possible solutions for each one of these sub-problems

are analysed.

2.2. Candidate Solutions

In this section, for each of the sub-problems identified in the previous section,

candidate solutions are analysed and compared.

2.2.1. Interface Definition

For inbound requests (#1 and #2 from the NF Store and #3 to #6 and #9 from the

Marketplace, above) a common request router receives all inbound requests and

passes them to the most adequate component to process them as shown in Figure

2.5.

Figure 2-5: Request router proposed architecture.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

16

The interface for the outbound requests will be designed with cooperation with the

other sub-system implementers.

Following a REST [7] approach, resources are accessed as follows:

http(s)://.../virtual-network-functions

http(s)://.../network-services

With this approach, requirements such as (the Marketplace) notifying the

Orchestrator about new, updated or deleted Network Services (requirement #3)

could be simplified to a REST POST call for creating a new NS (with the data being

defined in the body of the request, not shown):

http(s)://.../network-services/

For the same requirement, updates would be carried out using a REST PUT call (with

the data being defined in the body of the request, not shown), like:

http(s)://.../network-services/<ns-id>

Deleting is a REST DELETE call, in the form of:

http(s)://.../network-services/<ns-id>

The required state (or further information for this operation is needed, e.g., the

number of milliseconds until the execution of the operation) is inserted into the body

of the request.

Opting for a HTTP REST API will also allow the selection of fields to be returned from

a given resource. For example, for the Marketplace to inquire the Orchestrator about

the state of a given NS instance (requirement #6), a REST GET call, selecting the

status attribute (see [10]) can be specified as:

http(s)://.../network-services/<ns-id>/?fields=status

Standards [11] and best practices in writing JSON APIs [10] will also be taken into

account, thus simplifying future reuse of the specified APIs.

2.2.2. Data Streaming

For data streaming, Apache Storm [12] and Apache Spark Streaming [13] with their

batch-oriented design, and Apache Samza [14], with a message-by-message

streaming processor, offer potential solutions.

2.2.2.1. Apache Storm

Apache Storm is the Hadoop (batch processing) for real-time computing systems,

keeping the former's distributed features, as well as fault-tolerance, scalability,

robustness, etc. It can be used with any programming language as long as Thrift [15],

a software framework that combines a software stack with a code generation engine

to build services that work efficiently and seamlessly between different languages

(C++, Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#, Cocoa, JavaScript, Node.js,

Smalltalk, OCaml and Delphi and other languages), is used to define the interface.

Storm uses its own terminology and concepts, such as:

 Spouts: a source of streams, such as the dynamic metrics coming from a VM,

typically reads from a queuing broker (e.g., RabbitMQ [16], Kafka [17], etc.)

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

17

but can also generate its own streams or reads from third party streaming

API’s such as Twitter’s [18][19];

 Bolts: processes any number of input streams and produces any number of

new output streams. Most of the logic of a computation goes into bolts, such

as functions, filters, streaming joins, streaming aggregations, talking to

databases, etc.;

 Tasks: an instance of a bolt or a spout;

 Topologies: a network of spouts and bolts, with each edge in the network

representing a bolt subscribing to the output stream of some other spout or

bolt.

One drawback of Storm is that the topology has to be predefined in code. If the

topology needs to be created dynamically, for instance, to process a newly defined

NS metric, this may be an issue. Dynamically generating the code needed for the

necessary topology would be required. However implementation of this capability

may introduce another problem, which is the need to interrupt the service in order to

rebuild the topology. A solution to this latter problem would therefore have to be

designed as well: load balancing the old-topology version and the new approach.

Further research is required on this topic.

Another drawback is latency [20]: ...sub-second latency... responses to metrics

exceeding threshold values may be difficult for the Orchestrator to achieve.

When using Storm, messages can sometimes be duplicated: which might be a

problem, especially when there is a need to maintain state (e.g., when calculating

moving averages).

Storm has been used, as the processing engine, in a recent project called Monasca

[21], a monitoring-as-a-service, multi-tenant, REST API based framework, which will

be integrated into OpenStack. Monasca is designed with most of the features

required by the T-NOVA Orchestrator interfaces (real time processing, scalability,

fault tolerance, big data retention); therefore Storm emerges as one of the most

viable choices, in spite of the drawbacks identified above. It includes Kafka as the

message queue middleware and is based on a micro-service message bus for module

interconnections. Monasca REST API provides metric management, alarm definition

templates and notification mechanisms. Monasca implements real time anomaly

detection, performing up to 150K metrics/sec for a three-node cluster with load

balancing Virtual IP [21].

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

18

Figure 2-6: The Monasca high-level architecture.

An interesting point with respect to Monasca is that it selected Storm to implement

its real time monitoring and alarm detection, therefore its latency figures were not

considered to be a major limitation. Also, considering Monasca’s tight integration

with OpenStack, makes the Storm option far more appealing, and probably worth

considering as the first choice for the Orchestrator’s API implementation.

2.2.2.2. Apache Spark Streaming

Spark Streaming uses the core of Apache Spark API, which is especially important if

there is a need to store large volumes of data as well as processing them. This is a

key requirement for Orchestrator especially if metrics are to be processed and

provided to the Marketplace.

Spark Streaming's streams are groups of batches with a fixed duration (e.g., 1

second). Each time limited batch is called a Resilient Distributed Dataset (RDD),

which is called a Discretized Stream (DStream) when is part of a repetitive sequence.

Received data (not yet a RDD) is stored in Spark, and is later transferred into a

DStream, where it is either transformed or outputted.

Spark Streaming's deployment uses a Streaming Context object in the driver

program to talk to a Resource Cluster Manager (such as Apache YARN [22] or Mesos

[23]) and allocate executors. These executors run the data receiving or the data

processing tasks previously outlined.

Latency when using Spark Streaming is even higher than Storm's single digit

seconds performance [20]. This is due to its batch oriented design.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

19

2.2.2.3. Apache Samza

LinkedIn [24] released Apache Samza, another stream-processing framework, into

open source community, through the Apache Foundation. The most significant

difference from the previously described frameworks is Samza's ability to process

messages on serial temporal basis (not in batches), " an immutable unbounded

collection of messages of the same type" [25] called a stream. This feature allows

"low millisecond" latency values [26], which satisfies the needs of the T-NOVA

Orchestrator.

Messages in each of these streams can be read by many jobs, a logical collection of

processing units, or tasks, which can produce other messages into output streams.

Each job defines its source and destination streams (the topology). Scalability is

achieved by partitioning a stream into sub-streams, "a totally ordered sequence of

messages" [25], each stream processed by one of the tasks running in parallel. Tasks

"can consume multiple partitions from different streams" [25].

Samza's tasks run on a cluster managed by Apache YARN, which consume and

produce Apache Kafka streams (or topics). These streams are always persisted in a

distributed way by using Kafka's topic partitioning feature: messages with the same

key will always belong to the same partition. By default Kafka stores all messages in

the file system and only deletes them after a pre-configured amount of time, which

allows consuming tasks to consume messages at arbitrary points along the stream if

they need to. Mirroring Kafka to HDFS is simple [26], but optional: in real scenarios

this could be switched on, but left off for simpler scenarios (such as a demo), thus

saving on required infrastructures. Kafka itself is not consensual [27, 28], especially at

Operations: it is seen as difficult to manage and introduces extra precious (latency)

time when allocating new workers.

Samza’s tasks are written using the Java programming language [29]. This code

specifies how to process the messages. The main task is configured in a

comprehensive properties file. Property files along with the compiled code are

submitted to the Yarn Samza cluster.

2.2.2.4. Bespoke Data Streaming Implementation

How would the problem of data streaming be addressed if none of the frameworks

described in the previous sections existed, or if there was a requirement to allocated

limited resources to the solution design?

This section describes the eventual solution that could be built by this project.

The bespoke or 'built on purpose' approach has been described by Stonebraker et al.

as [1]:

...manually build a network of queues and workers to do real-time processing. Workers

would process messages off a queue, update databases, and send new messages to

other queues for further processing.

But that same reference also highlights the disadvantages of such a solution:

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

20

 It is tedious: most of the development time is spent configuring where to

send messages, deploying workers, and deploying intermediate queues,

leaving a relatively small percentage of time to design, implement and

support the real-time processing logic;

 It is brittle: fault-tolerance has to be designed and implemented to keep each

worker and queue up;

 It is not easily scalable: to increase throughput data has to be spread around

new workers and queues, and the existing workers have to be reconfigured to

know the new queues where to send messages.

Other alternatives, such as the ones described in [27] or [28] will also be further

analysed.

2.2.2.5. Other Approaches

One new approach to the problem of real-time stream processing is called the

Lambda Architecture [30]. In this architecture two paths for data are considered:

one more batch-oriented, having more time to be calculated from base structures

like Hadoop, and a parallel one, which is more real-time oriented, calculating the

results of the queries based only on the most recently available data. This has the

enormous advantage of reusing knowledge and tools from the Hadoop world, but

needs a duplication of the logic in the two data paths. Depending on the specific use

case, this may or may not be a problem.

A recent entrant into this field is Google Cloud Dataflow [31], which is still too

immature at this stage to be included however it will considered as the T-NOVA

project develops.

2.3. Solution Rationale

The following sections described the solutions for the T-NOVA Orchestrator

interfaces and the supporting rational.

2.3.1. Interfaces Definition

As outlined in Section 2, interfaces between the different T-NOVA sub-systems

require both flexibility in their definition, to support, e.g., new NSs composed of at

least one VNF, and efficiency in terms of resource usage, due to the expected high

volume of traffic (especially in the Southbound Interfaces). The current trend [32] is

to use a REST architectural style with JSON over HTTP, instead of WS-* [33], a more

Remote Procedure Call-based architectural style, using SOAP and XML also over

HTTP.

Other approaches like designing a proprietary solution from the ground-up would

take the project too much time and resources, and will not be pursued at this stage.

Using lower level solutions (e.g., Protocol Buffers [34] or Message Pack [35]) might be

needed if performance is not at the required level.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

21

2.3.2. Data Streaming

Table 2-1 summarises the potential solutions to the T-NOVA interface

implementation

Table 2-1: Summary of potential solutions for supporting a Streaming Data Processing

System architecture.

 Storm Spark

Streaming

Samza Built Description

Origin Twitter [36] UC

Berkeley

[37]

LinkedIn

[24]

T-NOVA The entity

responsible for the

solution

Tech. Stack JVM

[38]/Clojure

[39]

JVM/Scala

[40]

JVM/Scala TBD Technological

stack/programming

language used in

the framework’s

implementation

API

Language

Java Scala, Java Java TBD Technological

stack/programming

language must be

used

Batch

Framework

N/A Spark N/A N/A Permanent message

store. In the T-

NOVA case the

Orchestrator must

provide metrics to

the Marketplace

Processing

model

One record

at a time

Mini-

batches

One record

at a time

TBD Form of

consumption of the

available

information

Latency Sub-second

[20]

Few

seconds

[20]

Low

milliseconds

[25]

TBD Average delay

between event

occurrence and

event availability for

analysis. As the

Orchestrator

requires a fast

response time low

latency is required.

Fault

tolerance

(every

record is

processed...)

At least

once

(may have

duplicates)

Exactly

once

 TBD Options for

addressing failures

Form of Task Data Task TBD, could Scalability, in order

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

22

parallelism parallelism

[41]

parallelism

[42]

parallelism mix both

approaches

to process more

input

2.4. Recommendation

The analysis outlined previously (see Section 2.2) highlights the existence of a dual

level of functional performance to be guaranteed at the Northbound and

Southbound Orchestrator Interfaces. The northbound interface, interacting with the

Marketplace and the NF Store, must handle lower data throughputs, and less

stringent requirements of real-time response. The southbound interface, on the other

hand, needs to interact with the underlying infrastructure, which implies that:

 The data exchanged over the interface can be characterised as real-time

streaming;

 Data volume and throughput are higher (more fine grained components,

larger amount of generated data);

 Temporal responsiveness is more critical; on one hand to guarantee that no

data are lost, on the other hand to ensure prompt response in cases where

failure is detected or a security breach identified.

The Orchestrator adds a data mediation and enhancement dimensionality,

reconciling the raw data pushed by the southbound interface (metrics measures) with

the service to which the measured data are associated with, a logical connection not

captured at the VNF level. The selected technical solution must thus take into account

these different requirements. It is not guaranteed that a unique platform can meet

the demand of both the interfaces. The southbound interface poses the most

challenging requirements, and accordingly a more challenging choice.

In the Southbound Interfaces, data volume, velocity and variance are part of the

problem characterisation, hence it is natural to look at Big Data platforms, narrowing

the scope to the ones providing real-time processing capabilities as well as low

latency data passing mechanisms, in line with the Streaming Data Processing Systems

reference model. The previous sections discussed three options emerging from the

Apache community, where Samza is the one natively streaming oriented, Spark

Streaming and Storm have their origins in a batch processing oriented design. All

these frameworks are written in Java: hence a RESTful API design using JSON over

HTTP is an appropriate option.

Immediate considerations would lead to the selection of Samza as the first choice.

The most important factor relates to latency: according to the available specifications,

Samza is the only solution able to achieve low-millisecond single message processing

performance. Its ability to run with Yarn and Kafka gives flexible file system

integration, including HDFS mirroring, and accordingly good offline data processing

options.

Nonetheless, Storm being a flavour of Hadoop for real-time oriented systems, it

retains many features from Hadoop (distributed/parallelized processing model,

intrinsic fault tolerance and scalability). The key features of Storm are static topology

and (relatively) high latency, which may force the project to:

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

23

 Design a solution to support more flexibility in defining new topologies (e.g.,

to provide the Marketplace with a new NS metric that has to be composed

from the available metrics on the VNFs that are part of that NS);

 Design a solution that will have to anticipate actions further ahead in time, to

circumvent the delay from the higher latency.

But since Monasca is is using Storm for a similar problem, the project will have to

further investigate these issues before taking a final decision on using it or not.

Other options had been outlined in the previous sections. Spark Streaming is

appealing due to its ability to concurrently manage intra-orchestrator metric

processing and data storage. However, its native batch-oriented design makes its

latency significantly inferior to the one achieved by Samza or Storm, and potentially

rules it out as a viable solution option.

The lambda architecture is interesting due to its reuse of significant Hadoop

functionality, but it may pose some risk due to a more complex, double-path design.

It’s not evident if this design complexity outweighs the advantages of Hadoop

technology reuse. This could be a possible contingency solution for the project’s

second iteration, if the results of the first trials demonstrate serious shortcomings in

the selected option.

A new custom queue-worker solution can be tailored optimally to the T-NOVA

functional requirements. However, rebuilding from scratch the whole framework is

quite complex, error-prone, and, to be fully implemented, it will likely require time

and resources beyond the current T-NOVA scope. Considering that T-NOVA is a

research project, first and foremost aimed at proving the effectiveness of its concept,

it makes sense to seek a first-step solution based on existing frameworks. A custom

solution could be an interesting direction to follow as future work in a project follow-

up.

After a careful analysis of the available data, the project hasn’t made a clear decision

on which Streaming Data Processing platform is the most appropriate choice. The

Monasca project shows how Storm can be used to address a very similar problem. A

final decision on this subject will require experimental evaluation of a number of

candidate options before selecting the most appropriate one.

2.5. Relationship and Inter Task Dependencies

The dependencies of this Task3.1, Orchestrator Interfaces, towards other tasks are

listed in Table 2-2.

Table 2-2: Inter-tasks dependencies from Task3.1, Orchestrator’s Interfaces.

Task Dependency Description

Task 3.2: Infrastructure repository

This task will enable an understanding of

the static infrastructural metrics that will

be available and how these metrics will

be made available to the Orchestrator.

Task 3.3: Service mapping This task will enable an understanding of

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

24

how the Orchestrator can call the Service

Mapping implementation and with which

parameters.

Task 3.4: Service Provisioning,

Monitoring and Management

Know how the Orchestrator's core

components could be called for inbound

requests and call the outbound requests.

Task 4.4. Monitoring and Maintenance

This task will provide the Orchestrator

with dynamic infrastructure related

metrics based on a push approach.

2.6. Conclusions and Future Work

The design of the Orchestrator's interfaces has started, taking into account the

specific needs of each one of those interfaces.

The definition of the Northbound Interfaces is reaching a degree of maturity at the

current stage of Task 3.1 activities. However, with respect to the Southbound

Interfaces, further work, both within the scope of Task 3.1, Orchestrator Interfaces,

and within the other tasks of the work package, is required to clarify and further

elucidate some of the requirements. These clarifications, together with further

experimentation of some of the possible solutions mentioned above will lead to

clearer choices.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

25

3. INFRASTRUCTURE REPOSITORY

Task 3.2 is focused on the implementation of a resource discovery and repository

subsystem for the T-NOVA Orchestrator. This subsystem comprises of a number of

key elements and capabilities including (i) an information model; (ii) resource

information repositories; (iii) access mechanisms to the information repositories; (iv)

enhancement of the information repositories provided by cloud and SDN

environments and (v) a resource discovery mechanism. In addition the task is

investigating the implementation of a network topology visualisation capability for

the T-NOVA Orchestrator. Collectively these elements will provide detailed

information on the resources and their characteristics to the Orchestrator. The

Orchestrator utilises this information to reason over what collection of resource types

need to be provisioned by the cloud environment for different types of VNFs within

the T-NOVA system. The Orchestrator sends requests to the T-NOVA IVM to

provision the required VM resources.

In order for the VNFs to approach a performance close or similar to the one of the

counterpart hardware implementations, appropriate exploitation of platform features,

in terms of both hardware and software, within the NFVI environment is critical.

However the NFVI environment needs to be aware of such features and attributes by

first discovering them and then scheduling their usage during VM instantiation. For

example some VNFs can be characterised by intense I/O requirements and could

benefit from the ability to access high performance packet processing capabilities

such as Data Plane Development Kit (DPDK) software libraries and DPDK/Single Root

I/O Virtualization (SR-IOV) compatible network interface cards.

Task 3.2 has a strong inter-relationship with Task 4.1 in terms of the technology

choices that will be investigated for the implementation of the T-NOVA IVM. Within

Task 4.1, OpenStack has been selected as the candidate technology for the cloud

controller platform, while OpenDaylight has been selected as the SDN network

controller.

It is worth noting that the current OpenStack API and Scheduler only supports limited

enhanced platform features e.g. CPU flags [43]. Therefore, a mechanism is required to

appropriately control VM placement among the available hosts within the T-NOVA

infrastructure to increase the Orchestration capabilities for an intelligent placement of

VNFs on appropriate target compute platforms (within the same Point-of-Presence).

Identification of appropriate platform features to expose together with investigation

of potential exposure and utilisation mechanisms is being carried in Task 4.1.

Whereas Task 3.2 is focusing on the implementation aspects allowing the cloud

scheduler to effectively use platform information beyond what is available in the

OpenStack Icehouse release which was utilised in the preparation of this deliverable.

Task 3.2 will continue to monitor and utilise new platform information as they are

made in the OpenStack releases that will occur during the duration of this task,

namely Juno and Kilo.

Initial work has been focused on determining what infrastructure information is

available from the candidate technologies (OpenStack and OpenDaylight), what are

the available mechanisms to access the information and what are the current

resource information gaps, with a specific focus on platform features (e.g., the

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

26

availability of PCIe devices). In addition focus has also been given to identifying

possible approaches to exploiting this information within OpenStack.

Additional work is being carrying out in cooperation with Task 3.3. This task will

utilise the platform features information as an input in order to make decisions about

the optimal deployment of VMs. A number of activities are on-going to align the

available platform information with the input data needed by the resource mapping

algorithm, identify information gaps and to determine potential approaches for

obtaining the missing information.

3.1. Relevant Initiatives for Infrastructure Data Modelling

During the design and development phases of the T-NOVA Infrastructure Repository,

some relevant industry and standards initiatives have been identified and analysed in

order to capture the current state of the art in the Infrastructure Data Modelling. Four

key initiatives have been identified and are briefly discussed.

3.1.1. Redfish

“Redfish is a modern intelligent manageability interface and lightweight data model

specification that is scalable, discoverable and extensible.”

Redfish [44] is a specification under development by Intel,

HP, Emerson and Dell for Data Centre (DC) and system

management that is focused on the achievement of

improved performance, functionality, scalability and

security. Redfish provides a rich set of information in

human-readable format that can be easily used by DC’s administrators in their

remote management scripts. The specification is designed to improve scalability and

expand data access and analysis and enable feature-rich remote management while

protecting data at a high level supporting secure HTTP communications. Different

Redfish communications can be executed in parallel. Redfish encompasses efficient

cross-platform connections among various types of servers, operating systems,

networks and storage. Some common aspects with the T-NOVA Data Model

requirements can be identified, as Redfish is focused on the modelling of key of Data

Centre physical resources features. In particular Redfish’s resources categorisation has

relevance for the T-NOVA data model design.

3.1.2. IPMI

The “Intelligent Platform Management Interface” (IPMI, [45]) is a

series of specifications that defines a set of standardised

interfaces to provide management and monitoring capabilities to

servers, independently from their hardware characteristics (CPU,

firmware and operating systems). Using IPMI the system

administrator can monitor servers, before the OS has booted, when the system is

powered down or after a system failure, sending IPMI messaging to the platform in

order to obtain information produced by host sensors (temperature, voltage, fans,

power supplies). IPMI provides only the specification for the interfaces, while there

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

27

are many different implementations. DCMI is an extension of IPMI specifically

designed for DC management. IPMI provides a standard definition of low-level

infrastructure information as sensor data and events log.

3.1.3. Desktop Management Interface

The Desktop Management Interface (DMI) is an industry

framework for managing and monitoring hardware and

software components in a system of personal computers

from a central location [46]. The standard was created by the Distributed

Management Task Force (DMTF) to automate system management. Each computer is

described through a MIF text file (Management Information Format). The MIF

includes both hardware and software information and contains information such as

product name, version, serial number and timestamps. Manufactures can create their

own MIFs specific to a component. The definition of resource characteristics through

a text file may be a requirement for some platform features in OpenStack.

3.1.4. Cloud Infrastructure Management Interface

The Cloud Infrastructure Management Interface (CIMI) is a

cloud management standard created by the Distributed

Management Task Force [47]. It defines a logical model for the

management of resources within an infrastructure

environment as a Service domain and proposes an interface based on HTTP REST

calls and JSON/XML messages. It also defines a model for the resources in the cloud

such as computing, storage or networking resources. The model contains a Cloud

Entry Point that is essentially the list of resources in the cloud (machines, volumes,

networks, and network ports). For each resource it also provides metadata in order to

extend the model with provider specific information. The CIMI Data Model is

complementary to the Redfish Data Model, focusing on the requirements of virtual

resources in the cloud. T-NOVA draws on its specification in describing virtual

resources that are relevant for the Orchestrator. The HTTP-based protocol proposed

by CIMI specification is a relevant consideration in the definition of OpenStack API

extension.

3.2. Requirements

Requirements for the T-NOVA Orchestration and Infrastructure Virtualization

Management (IVM) have previously been documented in D2.31 [6]. Analysis of these

requirements was carried out and a mapping between the requirements and the

infrastructure repository functionalities is presented in Table 3-1. In particular, this

table provides a mapping between the requirements and how the repository will

specifically address them. The table provides a useful reference for interrogating and

validating the functionalities to be implemented within the repository.

Table 3-1: Infrastructure Repository Requirements.

Requirement How repository satisfies it.
NFVO.20 Resources Inventory The repository will provide specific fields for

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

28

tracking tracking the resource allocation, relying on existing
fields in OpenStack API (referring to CPU, disks,
RAM usage, etc.). Additionally, the repository will
provide a mechanism to track resources currently
not tracked by OpenStack (as GPUs, NICs, DPDK
libraries, etc.). Network information will be
provided using OpenDaylight API.

NFVO.17 Mapping Resources

The repository will collect information relevant for
resource mapping, information on host hardware
capabilities and network topology and capabilities.

Or-Vi.04 Retrieve infrastructure
usage data

Data related to infrastructure utilisation by VM
instances will be stored into the infrastructure
repository as information regarding network usage
information although the latter topic needs further
investigation.

Or-Vi.05 Retrieve infrastructure
resources metadata

Infrastructure metadata will be stored in the
infrastructure repository.

VIM.1 Ability to handle
heterogeneous physical resources

The VIM will retrieve infrastructure information
from the infrastructure repository (see Section
1.7).

VIM.4 Resource abstraction
The infrastructure repository will contain details of
VMs and their allocated virtual resources.

VIM.7 Translation of references
between logical and physical
resource identifiers

The infrastructure repository will contain the IDs to
identify virtual resources.

VIM.9 Control and Monitoring
Some information regarding history reports will be
available in the infrastructure repository as they
are associated with the history of each VM.

VIM.20 Query API and Monitoring
Hypervisor information will be collected and
persisted in the infrastructure repository.

VIM.23 Hardware Information
Collection

Hardware information will be collected and
persisted in the infrastructure repository.

C.7 Compute Domain Metrics

Information regarding capacity, capability and
utilization of hardware resources and network
resources will be persisted into the infrastructure
repository.

H.7 Platform Features
Awareness/Exposure

Hardware-specific features will be available in the
infrastructure repository.

3.3. Infrastructure Data Access Approaches

One of the key goals of the infrastructure repository is to provide information about

the current infrastructure resources to the Orchestrator. Utilising the information

outlined in Sections 3.4 and 3.5 the design of the overall infrastructure repository and

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

29

potential access options that can be used are presented in Figure 3-1. The respective

pros and cons of each potential approach identified are also presented.

Analysis of the available infrastructure information resources from the candidate

controller technologies has identified three potential approaches to making this

information available to the Orchestrator as shown in Figure 3-1.

Figure 3-1: Candidate Infrastructure Data Access Approaches.

Option 1

This option is based on the implementation of a standalone database (DB). The DB is

populated using a query engine to interrogate existing the NOVA, Neutron and/or

OpenDaylight DBs using a mixture of existing APIs and custom queries. The

Orchestrator would access the information in DB via a REST interface. The respective

pros and cons of this approach are as follows:

Pros Cons

 Data structured per Orchestrator

requirements

 Potentially faster response time to

Orchestrator queries

 More flexibility in data queries

 Adds layer of complexity and

source of failure

 Synchronisation and consistency

challenges with the OpenStack

and OpenDaylight DBs

 Additional overhead on existing

DBs

 DB query engine tightly coupled

with NOVA/Neutron DBs’

structures. Potential modifications

required with future OpenStack

releases.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

30

Options 2

This option is based on querying the NOVA and Neutron (and/or OpenDaylight) DBs

directly using SQL queries from the Orchestration layer. The respective pros and cons

of this approach are as follows:

Pros Cons

 Up to date information always

available

 Queries customised to

Orchestrator needs

 Potentially less complex

implementation

 Additional overhead on

NOVA/Neutron DB’s

 Queries tightly coupled with

NOVA/Neutron DB structures.

Potential modifications required

with future OpenStack releases

Options 3

Orchestrator uses existing NOVA, Neutron and OpenDaylight APIs and queries

required information

Pros Cons

• Aligns with

OpenStack/OpenDaylight releases

• Simplest implementation

• Less flexibility

• Additional complexity at

Orchestration layer to parse and

structure responses from GET

calls.

• Multiple API’s calls maybe

required to retrieve data of

interest

Based on analysis and discussions of these options the decision within the WP was to

explore Option 3, in further detail, to determine if the information available from the

APIs is sufficient to meet the Orchestration requirements. This activity is on-going

with input from the dependent tasks.

3.4. OpenStack Infrastructure Data

This section outlines the main sources of infrastructure information that are currently

available in the databases of the different modules of the Icehouse release of

OpenStack. Since OpenStack is a modular platform, each module has a database to

manage the resources and information relevant to functions of that module. In the

context of the T-NOVA infrastructure repository, the databases of interest are the

Nova and Neutron DBs.

3.4.1. Nova DB

The NOVA database is relative complex, containing more than 100 tables. The initial

activity within Task 3.2 was to investigate the table structures in order to identify the

tables containing interesting infrastructure data, potentially useful to the

Orchestrator. Figure 2 shows the inter-relationships between the tables of the Nova

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

31

DB containing physical resources within the cloud environment. In particular, the

table “compute_nodes” contains useful information about the physical hosts

including information on the hypervisor, the number of virtual CPUs, available/used

main memory (RAM), available/used disk space, CPU details (such as vendor, model,

architecture, CPU flags, the number of cores, etc.). Figure 3-2 only contains a subset

of the tables relating to “compute_nodes” for illustrative purposes only due to

resolution constraints.

Figure 3-2 Physical resources in Nova DB.

The other tables in Figure 3-2 are referred to as the Host Aggregates mechanism. It

allows OpenStack Nova to divide the hosts into subsets of nodes within the same

availability zone. Host Aggregates provide a mechanism to allow administrators to

assign key-value pairs to groups of machines. Each node can have multiple

aggregates, each aggregate can have multiple key-value pairs, and the same key-

value pair can be assigned to multiple aggregates. This information can be used in

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

32

the scheduler to enable advanced scheduling, to establish hypervisor resource pools

or to define logical groups for migration. From a T-NOVA perspective the Host

Aggregates offers an opportunity to use the aggregates metadata as a mechanism to

influence VM placement by added platform features into the node selection process

for VM placement.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

33

Figure 3-3 Virtual resources in Nova and Glance DBs.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

34

The tables within the Nova and Glance DBs, which store information related to virtual

resources, are shown in Figure 3-3. The primary table, where information relating to

VMs is stored, is called “instances”. An instance can have fixed IPs, floating IPs,

volumes, virtual interfaces that give it the access to many networks, an instance type,

and an image (from Glance DB). Also an instance or an instance type or an image can

have metadata that could be used as part of the scheduling process providing

additional information that could be utilised by the scheduler and filters. However

that capability is not available in the current release of OpenStack and, for that

reason, the implementation will require a standalone database as an extension of

OpenStack to investigate the proof of principle.

3.4.2. Neutron DB

Neutron provides “Networking as a Service” for OpenStack resources.

Figure 3-4 Neutron DB portion.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

35

The service is based on a model of virtual networks, subnets and port abstractions to

describe the networking resources. A network is an isolated layer-2-segment and

corresponds to a VLAN in the physical networking world. The network is the primary

object for the Neutron API. Ports and subnets are assigned to a specific network as

shown in Figure 3-4. A subnet is a block of IP addresses that can be assigned to the

VMs. A port is a virtual switch connection point. Each VM can attach its virtual

Network Interface Controller (vNIC) to a network through a port. A port has a fixed IP

address from those of the relative subnet. Routers are local entities that work at

Layer-3 networking enabling packets routing between subnets, packets forwarding

from internal to external networking, providing Network Address Translation (NAT)

services and providing access instances from external networks through floating IPs.

3.5. Infrastructure Information Retrieval

As previously outlined, existing infrastructure information is stored in the Nova and

Neutron DBs. Other information regarding network topology can be retrieved using

OpenDaylight API. Both OpenStack and OpenDaylight offer a set of REST APIs.

3.5.1. Nova API

Information within Nova DB can be accessed externally using the Nova REST API [48].

The API currently includes more than 100 REST calls, which can be used to query and

extract information from the NOVA database. Table 3-2 outlines the REST GET calls

that return physical infrastructural information that is of interest at the T-NOVA

Orchestration layer

Table 3-2: Nova Compute API Calls regarding Compute Nodes information.

Description Calls (GETs)

List of hosts /v2/{tenant_id}/os-hosts

Host’s detail /v2/{tenant_id}/os-hosts/{host_name}

List of Hypervisors /v2/{tenant_id}/os-hypervisors

Hypervisor’s details
(resources’ usage)

/v2/{tenant_id}/os-hypervisors/detail

Hypervisors Statistics over
all compute nodes

/v2/{tenant_id}/os-hypervisors/statistics

List instances that belong
to specific hypervisor

/v2/{tenant_id}/os-hypervisors/{hypervisor_id}/servers

As outlined in Sub-section 3.4.1, key-value pairs can be associated to groups of

machines based on the availability of similar attributes, using the Host Aggregates.

The NOVA API provides a set of GET and POST calls as outline in Table 3-2 that can

be used for both information retrieval and to persist metadata, which contains key-

value pairs, relating to an aggregate.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

36

The Nova API also supports of retrieval of information relating to the virtual resources

that are currently running on the cloud infrastructure. The relevant GET calls to the

Orchestrator are outlined in Table 3-3.

3.5.2. Neutron API

The GET REST API [48] calls currently available in the Icehouse release of OpenStack

are shown in Table 3-3. These GET calls are available to external services to retrieve

network infrastructural information stored in the Neutron DB. The information is a

key input for example into the Resource Mapping algorithm being developed by Task

3.3

Table 3-3: Neutron API Calls.

Description Calls (GETs)

List of networks /v2.0/networks

Single network /v2.0/networks/{network_id}

List of subnets /v2.0/subnets

Single subnet /v2.0/subnets/{subnet_id}

List of ports /v2.0/ports

Single port /v2.0/ports/{port_id}

List of routers /v2.0/routers

Single router /v2.0/routers/{router_id}

List of floating IPs /v2.0/floatingips

Single floating IPs /v2.0/floatingips/{floating_ip}

3.5.3. OpenDaylight API

OpenDaylight [49] is the candidate SDN controller selected for the T-NOVA IVM as

outlined in D4.0.1 [57]. OpenDaylight is integrated with OpenStack through the

Modular Layer (ML) 2 plugin that exposes the Neutron API. OpenDaylight provides an

SDN controller that comes with a Flow Programmer service that helps application

programming flows by using a REST interface. The basic job of the Flow Programmer

is to query and change state of switches by returning, adding or deleting flows. The

state of a resource is represented by an XML or a JSON object. The complete

collection of API calls provided by OpenDaylight that supports external interaction

including network information retrieval are outlined in Table 10-3. From a T-NOVA

perspective the most important REST GET API calls are described in Table 10-4.

3.6. T-NOVA Specific Data Model

3.6.1.1. Gaps Identified

Analysis of the Nova DB reveals that the infrastructure related information is relatively

limited apart from CPU flags. The Icehouse version of the OpenStack Nova DB

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

37

contains a table for tracking PCI/PCIe devices [50] installed within hosts. However the

table is currently not populated and there are no API calls available to interact with

the table. This is significant gap, in particular for VNFs, since many of them have

dependencies on the specific characteristics of the device (e.g. NIC with DPDK/SR-

IOV support). Moreover, even if the information was populated into the Nova DB,

there are no mechanisms currently available for the Nova Scheduler or filters to

utilise the information. Therefore a mechanism to identify additional platform

features and attributes is currently being developed and is described in the Enhanced

Platform Awareness (EPA) Discovery Agent section 3.7.1.

In order to expose and utilise additional platform features and attributes beyond

what is currently available in the NOVA DB, a specific filter needs to be implemented.

This filter will utilise the set of platform features which are stored across the Nova

and T-NOVA enhanced platform awareness DB’s in conjunction with Nova filter chain

and scheduler. The T-NOVA filtering implementation will select the physical node and

network connection with the required feature set to support a given VNF.

Implementation options for this requirement are being explored in Task 4.1. It is

expected that the T-NOVA Orchestrator will pass the platform requirements for a

given a VNF in the form of metadata in a REST API call to the VIM (specifically to the

OpenStack Controller). The specifics of the required API calls are being investigated

by Task 4.1 in conjunction with Task 3.1.

3.6.1.2. Data Model

An initial data model description has been developed based on the available

infrastructural information resources. This initial proposal is shown in Figure 3-5.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

38

Figure 3-5: Data Model overview.

The Orchestrator retrieves information about each resource in the platform. As

previously outlined, existing information will be available to the Orchestrator through

OpenStack/OpenDaylight APIs. In addition, a standalone DB containing EPA

information regarding physical hosts, peripheral devices, such as NICs, is being

implemented and will be accessible via a REST API to the Orchestrator and Nova

scheduler/filter mechanism. Based on input from Task 3.3 a significant gap in the

current model has been identified in relation to physical network topology

information. This gap is currently being investigated further in order to identify an

appropriate solution to the issue. The relationship between the data model and T-

NOVA architecture is shown in Figure 11-1 in the Annexes.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

39

3.7. Proposed Implementation Plan

As outlined in Section 3.5 the current implementation plan is focused around the use

of the existing APIs to expose infrastructural information to the Orchestrator.

However exposure of additional infrastructural information is required to support

more intelligent placement decisions for VNFs. The information will be collected via

the implementation of a Python based agent that can collect information relating to

platform features and capabilities from the physical servers. Figure 3-6 shows the

high level proposed implementation based on the combination of option 3 previous

described together with the EPA agent approach.

Figure 3-6 High level proposed architecture for T-NOVA IVM Infrastructure Repository.

The specifics of the EPA implementation are based on the deployment of an

application called EPA collector on the OpenStack controller as shown in Figure 3-7.

This application is responsible for aggregating information sent by the EPA agents

running on the physical server nodes. The collector stores the platform information

into a relational database and also provides a REST API that can be used by the

Orchestrator to access the information as necessary.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

40

Figure 3-7. Proposed EPA Architecture for T-NOVA IVM Infrastructure Repository.

Platform features to be collected by the EPA agents include:

1. Features that are related to a specific capability of the physical host, but are

independent of its utilisation. For example with DPDK it is required to know if

the specific host has these set of libraries and drivers installed for fast packet

processing. This type of resources is referred to as “non-enumerated”;

2. Features that are related to the specific instance usage/consumption of a

resource e.g. numbers of unassigned GPUs or number of SR-IOV channels. It

is important to know how many are available, how many are used and so on.

This type of resource is referred to as “enumerated”.

Details relating to the two different resources types are outlined in Table 3-4.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

41

Table 3-4. Infrastructure Repository Resources

Enumerated Resource Non-enumerated Resource

 name - used to identify this

resource

 type - a resource type name for

human viewing

 description - a short description

for human viewing

 resource total capacity

(configured or discovered - total

amount of resource

 resource used capacity (tracked -

amount of resource currently

used

 resource limit capacity (used to

implement under committing

policies of the resources)

 name - used to identify this

resource

 type - a resource type name for

human viewing

 description - a short description

for human viewing

 enable – Boolean

Non-enumerated resources typically have a long lifetime and are updated

infrequently. Enumerated resources require event driven updates, specifically every

time an event related to the VMs’ management occurs.

Therefore Nova Compute Resource Tracking needs to be extended to track the usage

of the additional resource types and features. For each additional resource type the

implementation of specific scripts will be required in order to obtain information

about them.

A standalone MySQL1 DB is deployed in order to contain information that cannot be

stored into the Nova DB through current API. In particular non-enumerated resources

regarding network topology could be stored into the metadata of Host aggregates

while other non-enumerated resources and enumerated resources into the external

DB. Using this solution additional information will be accessible through specific API

that will retrieve information out of the standalone DB.

To use this information in the scheduling process a specific filter will need to be

deployed that communicates with the external DB as shown in Figure 3-8.

1
 The initial implementation will utilise MySQL however alternatively solutions will also be

investigated such as MongoDB to determine the most appropriate long term solution.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

42

Figure 3-8. Proposed Relationship between EPA and NOVA DB’s.

3.7.1. EPA Discovery Agent

The EPA discovery agent runs on each node belonging to the cloud compute cluster.

It is responsible for discovering hardware capabilities of the physical server. The

Python based EPA agent developed to date extracts information from each host and

formats into a JSON object. This JSON object is then passed to the EPA Collector

ready to be imported into the EPA DB. Details of the platform information contained

JSON object are available in Section 12 (Annex D). The information available is much

richer than that currently stored in the Nova DB. For illustration purposes the output

of two of the most relevant infrastructure related API calls are presented in Table

12-1 on that Annex.

3.7.2. EPA Rest Interface

An initial prototype of a REST interface for the EPA DB has been implemented. It

adopts the same structure as the existing OpenStack API calls and from a user

perspective they appear as a simple extension of them. An example of a REST API call

is shown in Figure 3-9, which returns a list of the PCIe devices available from a

specified host. The call takes the form of:

GET /epa/v1/hosts/{host_id}/pci_devices

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

43

Figure 3-9: PCI Devices of a specified host.

Additionally the EPA agent checks each Ethernet Controller to determine if it uses

DPDK and stores this information as Boolean flag in the EPA DB.

For devices supporting DPDK, the SR-IOV channel support count is also identified.

Querying a lookup table, the EPA agent determines the number of channels the

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

44

device can support and stores that information together with the number of channels

that have assigned.

A web interface has been implemented to show the available EPA information for a

given host, based on the amalgamated information from the EPA and Nova DBs. An

example of the web interface is shown in Figure 3-10 and Figure 3-11.

Figure 3-10: Screenshot of the EPA Server web interface.

Figure 3-11: Screenshot of the EPA Server web interface.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

45

3.8. Network Topology Visualisation

In addition to the development of the Resource Repository as outlined in the

previous sections, Task 3.2 is also investigating the implementation of a “Service

Visualisation” module. The purpose of this module is to provide the Orchestrator with

actionable insights with respect to the virtual network builds and monitoring

operations across all segments of functional virtual network within the T-NOVA

system. It will function as a common inventory (including ordering and monitoring

functions) by showing the status of the network builds (in case of Carrier Ethernet,

ENNIs and EVCs) per access vendor data.

Additionally, through the visualisation module, the user (Service Provider and

Customer) will be able to highlight key faults and alarms, with the ability to drill down

and sectionalize faults to a specific segment of the network (e.g. location, vNet

segment, etc). This module needs to talk to most of OpenStack APIs in order to

acquire this information and also request this information from the TNM (even in a

semi static way, i.e the end Transport network routing/trunking information will not

change very often).

The main features of the module are:

 “Drill” down capabilities from maps to topology layers, aggregation sites and

domains;

 Extensive network path visualization for rapid fault isolation and segmentation

of the network, in areas/sections;

 End-to-End path from core or aggregation site to cell site with major

demarcation points and segments highlighted;

 Ability to drill down to detailed attributes of each object in the path based on

component/network attributes (currently support Carrier Ethernet, based on

MEF attributes);

 Showcases cross-path attribute visualization across multiple views including

bandwidth, VLAN, demarcation;

 View Status of network builds based on state (pending, live);

 Customizable views are provided, based on user rights/role, Service Provider,

Network Operator, Customer, which are fully configurable.

This module runs as a standalone service, providing a common northbound RESTFul

API for ease of integration into Service/Network Operator’s systems, and a pluggable

mechanism for the southbound interface to support different network inventories

(Carrier Ethernet, Sonet, etc.).

3.9. Relationship and Inter Task Dependencies

Task 3.2 has a number of inter dependencies with other tasks in WP3 and WP4. The

key dependencies are in Table 3-5.

Table 3-5: Inter-tasks dependencies from Task3.2, Infrastructure Repository.

Dependent Task Dependency

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

46

Task 4.1: Resource

Virtualisation

Task 4.1 will identify appropriate platform features that

should be collected and stored in the Infrastructure

Repository.

Task 4.1 will determine the most appropriate mechanism

for the use of EPA features within OpenStack scheduling

and filtering processes.

Task 3.3: Service

Mapping

Task 3.3 will use the information resources available within

the infrastructure repository as inputs into the definition

and development of the service mapping algorithm.

Task 3.1: Orchestrator

Interfaces

Task 3.1 will provide input into the definition of the

Orchestrators interfaces by identifying the OpenStack Nova,

Neutron and OpenDaylight REST API calls that should be

used the Orchestrator. Task 3.2 will implement an interface

to the EPA database.

Task 3.4: Service

Provisioning,

Management and

Monitoring

Task 3.4 will coordinate interactions of the service mapping

module and the infrastructure repository in order to

instantiate NS. It will also investigate how the network

visualisation tool can be combined or integrated with the

management UI of the orchestrator.

3.10. Conclusions and Future Work

Task 3.2 has conducted an analysis of the infrastructural informational resources

currently available based on the technologies that have been selected for the initial

implementation of the T-NOVA IVM. Different options have been identified and one

has been selected for implementation evaluation that is based on the use of existing

APIs in OpenStack and OpenDaylight. However limitations in terms of the available

infrastructural information have been identified. Therefore a solution is being

developed in the form of an enhanced platform awareness agent that can collected

additional platform regarding attributes and features and persist that information to

a relational database for use by the Orchestrator or the NOVA Scheduler/filtering

mechanism. An initial data model for the IVM has been developed based on the

information resources currently available and those that will be made available

through the EPA implementation.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

47

4. SERVICE MAPPING

This section presents the work carried out to date in Task 3.3, Service Mapping. A

definition of the Service Mapping problem is initially outlined in Section 4.1; then

different approaches proposed and investigated to date are presented in Section 4.2.

Section 4.3 reports details on OpenStack’s virtual machine deployment mechanisms,

while an initial comparison of the proposed service mapping approaches is presented

in Section 4.4. In Section 4.5 interdependences with the other tasks are outlined.

Finally, the task’s conclusions are presented in Section 4.6.

4.1. Problem Definition

The Service Mapping (SM) problem addressed in T-NOVA focuses on the optimal

assignment of Network Service (NS) chains to servers hosted in interconnected Data

Centres (DCs) that are operated by one Network Service Provider (see Figure 4-1(a)).

The optimality concept can be defined with regard to different objectives: economical

profit, Quality of Service (QoS), energy-efficiency and others.

The SM is an online problem. That is, the requests for NSs will not be known in

advance. Instead, they arrive to the system dynamically and, if they are accomplished,

they can stay in the network for an arbitrary amount of time. Algorithms for the SM

problem have to handle service requests as they arrive.

According to ETSI’s NFV Architectural Framework [51] a NS is represented by one

Forwarding Graph in which each vertex is a Virtual Network Function (VNF). Hence in

T-NOVA a NS is defined as a directed graph 𝐺(𝑁𝑆) = (𝑉, 𝐴) in which each vertex, say

ℎ, in the set 𝑉 represents a VNF, and each arc, say (ℎ, 𝑘), in A represents a link

connecting two VNFs required for the correct implementation of the service (e.g. a

chain in a web server tier composed by firewall, NAT and load balancer).

The Network Infrastructure (NI) on which we want to run the NS can be described as

a directed graph 𝐺(𝑁𝐼) = (𝑉𝐼 , 𝐴𝐼) in which each vertex, say p, in the set 𝑉𝐼

represents a DC, and each arc, say (𝑝, 𝑞), in 𝐴𝐼 represents the network connection

established by the network provider among the DCs.

Hence, the first problem arises when a new NS instance request arrives to the

Orchestrator and the SM is asked to assign each VNF in the required service to a DC

within the available network infrastructure (note that it is possible that all the

involved VNFs are eventually assigned to the same DC). More formally, this “first level

problem” can be stated as follows.

First level problem: Given a NS and a NI, solving the SM problem requires to assign

each VNF in the service, to a DC in the network (i.e. each vertex in V to a vertex in 𝑉𝐼)

and each arc (h, k) in A, to an oriented path in G(NI) from the DC to which the vertex

h has been assigned, to the DC to which the vertex k has been assigned.

Figure 4-1 (a) reports a NS composed by two VNFs, a NI composed by four

interconnected DCs and their corresponding graphs.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

48

Figure 4-1 (b) reports a solution of the first level problem involving the graphs of

Figure 4-1 (a). VNF1 has been assigned to DC1, VNF2 has been assigned to DC4 and

the arc connecting VNF1 and VNF2 has been assigned to the blue path from DC1 to

DC4, through DC3.

Figure 4-1: Example of a first level SM problem (a) and its solution (b).

Moreover, each VNF can have a complex structure, i.e., it can be decomposed in

elementary interconnected components, each one executable on a Virtual Machine

(VM). At the same time, each DC is composed by hundreds (or thousands) of

interconnected servers.

Hence, once a VNF has been assigned to a DC, a second problem (referred to as a

“second level problem”) arises by asking to instantiate each VM composing the VNF

on a server hosted in the DC.

More formally, each VNF can be described as a directed graph 𝐺(𝑉𝑁𝐹) = (𝑉𝐹 , 𝑉𝐹) in

which each vertex, say i, in the set 𝑉𝐹 represents a Virtual Network Function

Component (VNFc), and each arc, say (i, j), in 𝐴𝐹represents a link between

components of the VNF.

In turn, each DC can be described as a directed graph 𝐺(𝐷𝐶) = (𝑉𝐷 , 𝐴𝐷) in which

each vertex in the set VD represents a hardware apparatus, either a server or a

network switch, and each arc in AD represents the network connection established by

the DC owner between hardware apparatuses.

Figure 4-2 displays, on the left side, a VNF composed by four interconnected

components, and, on the right side, the internal structure of a DC model with its

interconnected apparatuses.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

49

Figure 4-2: Example of a VNF composed by four VNFcs (on the left) and of the internal

structure of a DC model (on the right).

Second level problem: Given a VNF and a DC, solving the SM problem requires also

to assign each VNFc in the VNF to a server in the DC (i.e. each vertex in 𝑉𝐹 to a vertex

representing a server in 𝑉𝐷) and each arc (𝑖, 𝑗), in 𝐴𝐹 , to an oriented path in G(DC)

from the hardware apparatus hosting the VNFc i to the hardware apparatus hosting

the VNFc j.

Figure 4-3: Example of second level SM problem (a) and its solution (b).

Figure 4-3 (a) shows an instance of the second level problem, in which we need to

assign the components of the VNF1 to the servers of the DC1. Figure 4-3 (b) shows a

solution of the second level problem, where each component has been assigned to a

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

50

(suitable) server and the links connecting the components have been mapped to the

blue paths involving switches and servers.

Each NS is composed by one or more VNFs and is represented as a forwarding graph

of those VNFs, each one of these being represented by its own graph whose vertices

are Virtual Network Function Components. Hence each NS can be directly

represented as a graph of components. At the same time, the NI is a composition of

DC graphs and it also can be directly represented as a graph of hardware

apparatuses. If we use the two representations outlined, one for the NS and the other

for the NI, then the Service Mapping problem reduces to the Virtual Network

Embedding (VNE) problem (see [52] for a comprehensive survey), i.e. the problem of

embedding a virtual network, represented by an oriented graph, into the platform of

a substrate network, represented by another oriented graph. More formally, this

problem can be stated as follows.

The flat problem: If we explode each node-graph G(VNF) contained in graph

𝐺(𝑁𝑆) = (𝑉, 𝐴) we obtain a new expanded directed graph, say EG(NS) = (EVF, A’

EAF) which we call the expanded representation of the NS. Let Vh
F denote the set of

components associated to the VNF corresponding to the vertex h in V. The vertex set

in EG(NS) is given by all those components, i.e. EVF = hV Vh
F. Similarly, let Ah

F

denote the set of arcs associated to the VNF corresponding to the vertex h in V. EAF is

given by all the internal arcs, i.e. EAF = hV Ah
F. At last, each arc (i, j) in A’ replaces a

corresponding arc (h, k) in A by connecting two suitable components, i and j, where

component i belongs to the VNF h, and component j belongs to the VNF k.

In the same way, if we explode each node-graph G(DC) contained in graph G(NI) we

obtain a new expanded directed graph, say EG(NI) = (EVD, AI’ EAD) which we call the

expanded representation of the network infrastructure. Let Vh
D denote the set of

hardware apparatuses associated to the DC corresponding to the vertex h in VI. The

vertex set in EG(NI) is given by all those apparatuses, i.e. EVD = hVI Vh
D. Similarly, let

Ah
D denote the set of arcs associated to the DC corresponding to the vertex h in VI.

EAD is given by all the internal arcs, i.e. EAD = hVI Ah
D. At last, each arc (i, j) in AI’

replaces a corresponding arc (h, k) in AI by connecting two suitable switches, i and j,

where the switch i belongs to DC h, and the switch j belongs to DC k.

On the left side of

Figure 4-4, the two VNFs of NS in Figure 4-1(a) have been expanded and the

corresponding expanded direct graph is presented. On the right side of the figure,

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

51

each of the four DCs in the NI presented in Figure 4-1(a) has been expanded and the

direct graph modelling all the interconnected hardware apparatuses involved is

presented.

Figure 4-4: Example of a flat SM problem.

The T-NOVA Service Mapping problem requires the solution, in a feasible way, of

both the first and second level problems, or the solution, in a practical way, of the flat

problem.

Since the Virtual Network Embedding problem is NP-hard [52] even solving the SM

problem is NP-hard and, apart for instances of small size, only heuristic approaches

can be considered.

4.1.1. Assignment Feasibility

The candidate hardware apparatus for a mapping have to be able to support the

performance requirements of the virtual components.

 For example, a 1000 MBit/s virtual link cannot be mapped to a path containing a

100 MBit/s substrate link.

 Likewise, the CPU computation capability requested by a virtual node has to be

less than (or equal to) the CPU computation capability actually provided by a

server.

 When redundancy is required, e.g. if we require that each functional link in the

G(VNF) has to be protected against failures by allocating a spare companion link,

both functional and spare links in the G(VNF) need to be assigned to link (or

node) disjoint paths in the G(DC) of the DC to which the VNF has been mapped.

In this way a single link (or node) failure in a physical apparatus does not

compromise the virtualized service.

 Depending on the service and, in turn, on the VNF it belongs to, the VNFc can be

characterised by specific requirements and could benefit from the ability to

access to high performance computing platform features (like hardware and

software accelerators, GPUs, etc.).

Since we are facing an online problem, the amount of physical resources available at

any instance in time is the infrastructure hardware apparatuses in the DCs minus that

allocated to VMs currently running on their servers in response to satisfying NS

requests. Only when a service is terminated does it allocated resources

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

52

(computational and bandwidth demands) become available, and can be assigned, to

other incoming service requests.

Resource requirements are modelled by annotating a NS with the computational

demand for each node and bandwidth link associated with each VNFc involved.

Likewise, the Network Infrastructure is annotated with node and link resources for

each hardware apparatus. Demands and resources have to be matched in order to

achieve a feasible mapping. This means that virtual demands are first mapped to the

candidate hardware resources, and then only when all the virtual demands are

mapped, the entire service can be allocated and hardware resources actually spent.

Despite the claimed elasticity of the cloud, there will be cases (due to the dimension

of the deployed physical infrastructure) where the infrastructure will not accept the

allocation request.

4.1.2. Objective Functions Definition

Independently of the solution approach (flat, top-down or bottom-up, described in

Section 4.2), top-level decisions and bottom level decisions may involve different

objectives.

At the bottom level, that is the assignment of single VNF components to servers

inside a DC, the main objective is load balancing. However, a more detailed

descriptive modelling of the DC may yield different objectives. An appealing option

includes inter-rack traffic as a term since it can lead to some reduction of energy

consumption even if at the expense of load balancing.

At the top level (i.e. the assignment of VNF chains to DCs) user-value and economics

oriented measures are more suitable. Top-level objective functions might reflect the

value that the Marketplace gives to the service directly in terms of price.

The decision of which DC is most suitable for the deployment of the VNF chains

could be based on several business criteria such as:

 A difference in the price of each DC for the customer. However, this would

mean making more explicit to the customer the underlying infrastructure,

which is not the focus of Network Functions Virtualisation (NFV) scheme. The

Service Provider (SP, which in T-NOVA owns its own infrastructure) would

choose the infrastructure according to his own criteria and the customer does

not care about this (while the SP could decrease costs, energy consumption,

etc.).

 Type of customer. This could be a distinction of several customer profiles,

each pre-assigned to one DC. For example, VIP customers all grouped in the

DC having the highest SLA scores). However, this option may lead to waste of

resources.

 The SLA parameters and the capacity of the DCs. The Service Provider, if it had

enough knowledge about it, could choose which of the DCs is able to cope

with the overall demand and meet that particular SLA.

With respect to the criteria above and considering the T-NOVA customer point of

view the most suitable approach is based on the SLA agreed in the Marketplace,

which in turn will match with the price agreed in the Marketplace for that level of

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

53

service. The customer only requires that the service received matches what was

contracted.

For instance, if a given price is assigned to a service depending on the requested

Quality of Service (QoS), and that QoS is measured in terms of latency, additional

computing flexibility and backup storage would be needed; then a linear combination

of these measures can be used as an objective function of the top level assignment

process. This information must come from the Marketplace (to be further researched

later on T-NOVA).

4.1.3. Reconfiguration Issues

Since the SM is an online problem and the SM algorithms have to handle each

service requirement as it arrives, reconfiguration issues arise.

We will study the feasibility of dynamic approaches, which will try to reconfigure

VNFcs already mapped, without invalidating the original SLA, in order to both

reorganize the resource allocation and to optimize DC resources utilization. This can

be due to:

 Fragmentation of physical resources: as new services are embedded and

others expire and release their resources from the NI, the embedding services

become fragmented and the number of accepted services diminishes,

resulting in a long-term revenue reduction.

 Changes in the service: a service may change in terms of topology, size and

resources due to new requirements demanded by its users.

 Changes in the DC: network providers can update their networking

infrastructure to cope with scalability issues and, hence, some DC increases its

size and current virtual components can find different and more efficient

allocations.

 Fault occurrences: in case of server/apparatus failures all assigned VNFcs need

to be reallocated on the fly with the minimum possible impact on the agreed

QoS.

 VM migration: the process of virtual machine migration between different

physical servers without disconnecting the running application.

4.2. Proposed Approaches

The approaches for solving the SM problem in T-NOVA project can be grouped into

three categories.

4.2.1. Flat Approaches

These approaches aim at solving the flat problem and, for this reason, are mainly

viable for small dimension instances. In real life scenarios each DC can be composed

by thousands of servers and the dimension of the EG(NI) can accordingly be very

large. Nevertheless, ad hoc algorithms exploiting suitable clustered representations

of DC can be used.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

54

4.2.2. Top Down Approaches

These approaches aim at solving the first level problem, identifying a minimum cost

mapping of each VNF in the service to a DC in the NI.

Then for each matched couple (VNF, DC), identified by solving the first level problem,

top down approaches try to solve the second level problem.

Let us observe that when two or more VNFs are assigned to the same DC (which is

always a possibility to be considered) the order in which the two corresponding

second level problems are solved becomes relevant. Alternatively, the second level

problem could consider as input into the union of the disjoint graphs associated to

the two or more VNFs that tries to identify an overall assignment of all involved

virtual components to the DC.

4.2.3. Bottom Up Approaches

These approaches try to solve (possibly in parallel) the second level problem for each

possible couple (VNF, DC), saving an “overall mapping cost” for each couple.

Then they try to solve the first level problem by using the costs computed in the first

step, to identify a final mapping of each VNF in the service to a DC in the NI.

In the following, we list the possible approaches that the partners involved in this task

are investigating for solving the SM problem.

4.2.4. Multi-stage Network Service Embedding

This approach has been proposed by the Gottfried Wilhelm Leibniz Universitaet

Hannover (LUH).

4.2.4.1. Main assumptions

 Each NF Service Provider advertises a PoP-level graph with link costs, and the

NF costs, i.e., CPU cost at the DC.

 Two-level hierarchical DC topologies (i.e., fat trees).

4.2.4.2. Iterative Algorithm

1. Identify location-dependent VNFs (e.g., proxies; resources should be in

proximity to the client’s network).

2. Identify candidate DCs for each VNF in the service chain.

3. If there is no DC satisfying all VNF requirements and constraints, partition the

service chain among DCs:

 Formulation as (Integer) Linear Program.

 Different objectives depending on the service and NF providers

preference, for example:

o Minimizing the client’s expenditure.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

55

o Maximizing load balancing across the DCs by considering

(i.e., minimisation of) weight values that express NF Service

Providers’ preferences.

4. Upon partitioning, assign the VNFs to servers within the selected DCs:

 Formulation as (Integer) Linear Program.

o Objectives: Minimize inter-rack traffic and the number of

used servers.

 Alternative solution: Heuristic algorithm that aims at assigning the

VNFs to the smallest number of racks and servers, while CPU load

and bandwidth are balanced across the racks and servers.

5. Stitch together the VNF service chain segments (mapped to different DCs)

with the assignment of virtual links connecting the DCs:

 Objectives: To find the shortest path between a pair of DCs that

offers the required amount of bandwidth.

 Multi-commodity flow problem formulation.

Previous work/information relevant to this approach can be found in particular in [4].

4.2.5. VNF Scheduling over an NFV Infrastructure

This approach has been proposed by Internet e Innovació Digital a Catalunya

(i2CAT), and it adds a temporal dimension to the problem, considering that the set of

virtual network functions composing the different services need to be scheduled over

the NFV infrastructure in order to optimise the service execution. It is complementary

to the other approaches, since this is mainly focused on the scheduling of the

different VNFs instead on the specific mapping on the physical infrastructure.

In a typical scheduling problem [53, 54] one has to find time slots in which activities

should be processed under given constraints, such as resource constraints and

precedence constraints between those activities (i.e. we need to find the

corresponding time slots for the virtual network functions composing different

network services to be executed over a given set of machines – or servers –

considering that each service consists of a set of ordered virtual network functions).

4.2.5.1. Model

This problem can be formulated as a Resource Constrained Project Scheduling

Problem (RCSP), in detail, a flexible job-shop problem.

4.2.5.2. Main assumptions

We have a set of N network services
NNSNS ,...,1

, where each network service is

composed of a set of virtual network functions, i.e. each NS j consists of n j virtual

network functions Fijwith (i =1,...,n j) , which have to be processed in the

corresponding order F1 j®F2 j®...®Fnj , satisfying the precedence constraints

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

56

between the different virtual network functions that compose the corresponding

service. Additionally, we have a set of m multi-purpose servers or machines2

mMM ,...,1
that can process the different virtual network functions. Each virtual network

function Fijmust be processed for pij > 0 time units without pre-emption on a

dedicated machine mij MMu ,...,1 . Each multi-purpose server can process only one

virtual network function at a time. Furthermore, let us assume that there is sufficient

buffer space between the different servers to store a network service if it finishes on

one server and next server is still occupied by another function. Let us now define a

schedule ijSS , which is defined by the starting time of all network functions ijF .

We say a schedule is feasible if

 jiijij SpS ,1 for all network services Nj ,...,1 and 1,...,1 jni , i.e. the

precedences jiij FF ,1 are respected, and

 Sij + pij £ Suvor Suv + puv £ Sij for all pairs Fij,Fuvof functions with uij = uuv , i.e.

each server processes only one job at a time.

The objective is to determine a feasible schedule S with minimal makespan

Cmax = max
j=1

N

C j{ } , where C j = Sn j , j + pn j , j is the completion time of the Network

Service NS j . SLA parameters are not included in the model; it is assumed that a

server capable of serving a given VNF will fulfil all the requirements of the specific

VNF.

4.2.5.3. Solution

The problem may be solved with a two-stage approach, in the first, servers are

assigned to the corresponding virtual network functions and in the second the

resulting classical job-shop problem is solved, following guidelines proposed in [55].

4.2.5.4. Next Steps

Even if the scheduling problem is only considered from a theoretical perspective

within the Orchestrator (and not implemented), we will propose different approaches

following the proposed solution. The approaches will follow the same two-stage

approach aiming at optimising different targets.

Furthermore, it is envisaged future work on the model in order to include

assumptions and constraints coming from the implementation activities.

2
 In this subsection, the term “server” is utilised from the theoretical perspective used in

literature of scheduling algorithms, to mean a minimal logical entity able to serve a virtual

network function (and not the actual meaning of a physical server hosting VMs, etc.). In T-

NOVA, the term server used in this section therefore indicates one CPU core, or one

computing unit in general.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

57

4.2.6. Reinforcement Learning Based Approach

This approach has been proposed by Consorzio Per La Ricerca Nell' Automatica E

Nelle Telecomunicazioni  (CRAT).

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

58

4.2.6.1. Main Goal

In order to provide a scalable and robust solution to the SM problem introduced in

Section 4.2, a novel inter-DCs resource allocation algorithm, based on a Markov

Decision Process (MDP) [56], is proposed. The main goal of this approach is to

dynamically assign the service requests to a set of IT resources, with the aim of

maximizing the expected revenue over time, satisfying the requirements requested by

the users and taking into account also constraints of the use/availability of resources.

In this scenario, the revenue has to be interpreted in the most general way. In fact the

revenue could represent the profit associated to each NS assignment, but also the

convenience from a load-balancing point of view.

4.2.6.2. Proposed Approach

Starting from the information provided by the other T-NOVA modules, (i.e. the NS

required by the user (i.e. the Marketplace), the resources required to provide a service

(i.e. the Network Service Descriptor), the resources available in each DCs (i.e. the

Infrastructure Repository) and the revenue obtained by a certain assignment, we

model the problem as a MDP. Thereafter, to find the optimal policy, this approach

uses the Reinforcement Learning techniques (e.g. Value iteration, Policy Iteration, Q-

Learning, etc.), in order to make the algorithm learn and to adapt its strategy to

change. The main advantages of the MDP-based approach are the possibility to

provide a solution that takes into account also the requests that could arrive in the

near future and, furthermore, the possibility to run “offline” the learning phase and

use the optimal policy to map “online” the NS requests.

To reduce the execution time during the learning phase, this approach uses a

geographical partitioning of the DCs. In Figure 4-5 an example of geographical

partitioning is provided, where DCs having the same colour belong to the same

cluster. This assumption allows both to guarantee geographical constraints expressed

by the user and to reduce the state space of the problem.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

59

Figure 4-5: Example of geographical partitioning of DCs (source:

http://www.interoute.com/sites/default/files/images/Geographic_map_europe_VDC_24

0214.png).

According to the classification introduced in Section 4.2, the proposed approach has

to be considered basically as a bottom-up one. In fact, by performing the learning

phase, the optimal policy takes into account all the information that arises from the

compute node level. Even if the geographical partitioning of the DCs follows a top-

down schema, the main logic of this approach is bottom-up.

4.2.7. Topology Aware Algorithms

This approach has been proposed by Universita Degli Studi Di Milano (UNIMI). The

aim is to compare the top-down, bottom-up and flat approaches. The general

technique used for solving the underline VNE problem will be local search based

meta heuristics for the node-to-node mapping, and constrained network flow Integer

Linear Programming (ILP) models for the link-to-path mapping.

Main assumptions:

 An annotated representation of nodes and links of the NI of the SPs and an

annotated representation of nodes and links of each DC in the NI are stored in

the project DBs.

 An annotated representation of nodes and links of the NS required and an

annotated representation of nodes and links of each VNF in the NS are stored

in the project DBs.

http://www.interoute.com/sites/default/files/images/Geographic_map_europe_VDC_240214.png
http://www.interoute.com/sites/default/files/images/Geographic_map_europe_VDC_240214.png

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

60

Besides node CPU capacity, or link bandwidth, the topological attributes of nodes

have significant impact on the success and efficiency of mapping outcomes. Hence,

we will try to use at the same time node specific features, resources and topological

attributes. We plan to measure the topology-aware resource ranking of a node, in

order to reflect the resource and quality of its connections. This approach would

enhance the performances of the node-to-node mapping phase. The general

structure will be:

1. Starting from their annotated representations, build the G(NI) and the G(NS)

graphs. For each VNF in the NS build the G(VNF) graphs. For each DC in the

NI estimate by means of topology aware techniques G(DC) or suitable sub

graphs of DC.

2. Depending on the top-down, bottom-up or flat approach, for each VNE

problem which requires to map G(V,A) into G(V’,A’) solve the constrained

node-to-node and the link-to-path mapping problem.

Depending on the different VNE problem considered and on the information/cost

coming from Marketplace we will adopt different objective functions to identify (sub)

optimal solutions: client’s expenditure, latency, inter-rack traffic, path length, and so

on.

4.3. OpenStack VM Deployment Mechanisms

The second level problem of Intra DC VM allocation is strictly related to the logic of

the Cloud Controller running within the DC it-self. This allocation problem, in fact, is

about the choice of the specific compute node that has to host the VMs inside the

specific DC. As delineated by Task 4.1 activities, and also in Deliverable 4.01 [57], the

candidate technology selected for the Cloud Computing environment in T-NOVA is

OpenStack.

OpenStack’s scheduling and filtering mechanisms are used to select the compute

node on which run a new VM is based on two main elements:

1. Host grouping.

2. Compute node Scheduling.

4.3.1. Host Grouping

Grouping the hosts within a DC can help to reduce the size of the problem, allowing

the Orchestrator to select a subset of nodes where a VM has to be deployed and

leave to OpenStack to specify the selection of the compute node within the identified

subset.

Within OpenStack there are mainly two mechanisms to partition the DC: availability

zones and host aggregates. Both those mechanisms can be useful and are under

investigation for the task activities. Even if availability zones are implemented and

configured in a similar way to host aggregates, they are usually used for different

reasons and have different features.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

61

An availability zone arranges OpenStack compute hosts into logical groups and

provides a form of physical isolation and redundancy from other availability zones,

(such as by using separate power supply or network segments). Availability zones

could also help to separate different classes of hardware. The availability zones are

visible at the API level (e.g. the Orchestrator would be able to see the availability

zones configured in a DC and select one of them for the deployment of VMs).

Another feature is that they are exclusive (e.g. a physical host can belong to one and

only one availability zone) and they have to be defined at the server start-up time, so

that it is not possible to change the availability zone of a host at runtime.

The host aggregates enable the administrator to partition OpenStack Compute

deployments into logical groups for load balancing and instance distribution. Host

Aggregates can be used to further partition an availability zone collecting hosts that

either share common resources, such as storage and network, or have special

properties, (such as trusted computing hardware, specific software features, or

others). The host aggregates are mainly used for internal OpenStack scheduling

purposes (for use with the Nova Scheduler, discussed later in this section). Moreover

the host aggregates can be defined at runtime and a host can be included in more

than one aggregate (e.g. they are not exclusive).

The selection of the specific techniques to cope with the second level allocation will

be further investigated.

4.3.2. Nova Scheduler

Once a group of host has been selected, the specific compute node still needs to be

identified. This is done within OpenStack by the Nova Scheduler. The built-in Nova

Scheduler is based on a Filter mechanism: there are different built-in filters provided

by OpenStack that can be used by the Scheduler to determine how to dispatch

compute (and volume) requests. In fact, the nova-scheduler service determines which

host a VM should launch on. The scheduler works in a two-phase approach, which

are:

1. The Filtering phase.

2. The Weighting phase.

4.3.3. Nova Filters

Filtering a list a list of acceptable hosts. These hosts are the ones that satisfy specific

conditions verified by the filters. There are a number of different ways to configure

the Nova Filter:

 Using the OpenStack Filters: there is a long list of filters that can be currently

applied and that are available to filter the hosts according to specific criteria

(available RAM on the host, specific computing capabilities, and so on). A

complete list of the built-in filters is provided in [58]. There is a specific family

of filters called Affinity Filters, which the “SameHostFilter” and

“DifferentHostFitler” belong to: they are useful for scheduling the deployment

of two VMs onto the same physical host or onto different hosts respectively.

Again, more details can be found in [58].

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

62

 Implementing a Custom Filter: a custom filter can be implemented using

Python, extending the Filter standard Interface provided by Nova. This filter

can implement a specific criterion according to the necessary orchestration

strategy.

 Configuring a Filter Chain: the filters (both built-in and custom) can be used

as a chain: which means that the second filter will receive the output from the

first, and so on. This will be useful to select the node using different criteria at

the same time.

Each time the scheduler selects a host, it virtually consumes resources on it, and

subsequent selections are adjusted accordingly.

4.3.4. Nova Weights

If the filtering phase provides more than one node, it is necessary to choose just one

of them to host the new VM. In that case the weighting process will be applied. It is

basically a way to associate a specific weight to each node, in order to find the best

one suitable to the execution of that VM. This mechanism is based on objects called

weighers, through which it is possible to assign a weight to each node. In order to

prioritize one weigher against another, all the weighers have to define a multiplier

that will be applied before computing the weight for a node. All the weights are

normalized before being applied. Therefore the final weight for the object will be:

weight = w1_multiplier * norm(w1) + w2_multiplier * norm(w2) + ...

The default behaviour of the Filter Scheduler is to weigh hosts based on the following

weighers:

 RAM Weigher: hosts are weighted and sorted with the largest weight

winning. If the multiplier is negative, the host with less RAM available will

win (useful, for example, to implement a consolidation approach) or on the

contrary if the multiplier is positive, the host with more RAM available will

win (useful to implement a load balancing approach).

 Metrics Weigher: this weigher can compute the weight based on various

metrics of the compute node, those metrics has to be specified in the

configuration file of each compute node and can have names chosen by the

administrator.

 Io Ops Weigher: the weigher can compute the weight based on the

compute node workload. The default is to preferably choose light workload

compute hosts. If the multiplier is positive, the weigher prefers choosing

heavy workload compute hosts, the weighing has the opposite effect of the

default.

It is also possible to develop custom weighers as a plugin to the existing framework.

4.4. Approach Comparison

Table 4-1 reports a comparison among the approaches proposed above.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

63

Table 4-1: Comparison among SM approaches.

 Multi-stage

Network

Service

Embedding

VNF

Scheduling

over an NFV

Infrastructure

Reinforcement

Learning

based

approach

Topology aware

algorithms

Objectives

Cost

minimization

or load

balancing

Cost

minimization

(minimal

makespan)

Revenue

maximization

Cost

minimization or

load balancing

Classification3

Top-down N/A Bottom-up Bottom-up and

Top-down (for

comparison)

 Two-stage Single stage Two-stage Two-stage

Optimization

Stages

1st stage:

exact

2nd stage:

exact or

heuristic

Exact or

Heuristic

1st stage:

approximate

2nd stage:

approximate

1st level: exact or

heuristic

2nd level: heuristic

Online/Offline

Online Online Hybrid

Offline

(Learning) and

Online

(Mapping)

Online

Resource

constraints

CPU,

bandwidth,

location

Infrastructure

resources

available

SLA, location,

node

resources, link

resources

SLA, node

resources, link

resources

Node/link

mapping

Coordinated4 - Coordinated Coordinated

Dependencies

Optimizer,

e.g. CPLEX5

N/A No

dependencies

(algorithm

developed in

Matlab)

Optimizer, e.g.

GLPK6 or CPLEX

3
 Classification into top-down, bottom-up, or flat approaches, according to Section 4.2.

4
 Node mapping and link mapping takes place simultaneously, i.e., we can rethink node

mapping if the overall cost is lower. In contrast, uncoordinated means, the node mapping is

fixed before we start mapping the links, even at the risk of rejection.

5
 CPLEX, developed by IBM, is one of the most efficient commercial tools available for solving

mathematical optimization problems (see

http://www.ibm.com/software/commerce/optimization/cplex-optimizer/).
6
 GLPK is an open source tool for solving linear mathematical optimization problems (see

https://www.gnu.org/software/glpk/).

http://www.ibm.com/software/commerce/optimization/cplex-optimizer/)

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

64

4.5. Relationship and Inter Task Dependencies

This sub-section lists dependencies of this task from other tasks.

The SM algorithm needs to know:

 The data representing the Network Function Service with all its VNFs, to be

mapped.

 The data representing the Network Infrastructure on which to install the

service.

 Files with parameters for costs definitions and for constraints on feasible

mapping solutions.

Table 4-2: Inter-tasks dependencies from Task3.3, Service Mapping.

Dependent Task Dependency

Task 3.1: Orchestrator

Interfaces

The information required for building the graph

representing the NS and the graphs representing all the

VNFs involved by the service. This involves not only the list

of all nodes and links in the graphs but also their

annotation, i.e. parameter values for CPU, bandwidth,

maximum delays and so on, as well as the SLA thresholds

for different parameters coming from the Marketplace, as

part of the NSD.

The information representing constraints on the mapping

solution different from that represented in the annotation

of nodes and arcs:

a. E.g. information about all link to paths assignments

that require node disjoint paths.

b. All cost information that allows the SM algorithm to

rank two different feasible mappings.

Task 3.2:

Infrastructure

repository

The information required for building the graph

representing the NI and the graphs representing all the DCs

composing the NI. In particular, Figure 11-1 contains all

data required for the nodes representing hardware

apparatuses, while studies are on-going in particular

regarding the available information on internal DC links and

the most efficient way to represent the information on NI

and DC topology

Task 3.4: Service

Provisioning,

Management and

Monitoring

The basic idea is not to use run-time information on the

current use of resources. We need to know the resource

required by all the implemented and running services, not

their current use (the actual use will be less or equal to the

required one).

 If this information is stored and maintained in the

Infrastructure repository of task 3.2 we do not need

anything else.

Finally, dealing with the output of the SM, the best feasible

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

65

solution (if any) found by the SM algorithm will be written

on a DB after an agreement on the format.

Task 4.4: Monitoring

and Maintenance

The same as from Task 3.4 (above)

4.6. Conclusion and Future Work

The Service Mapping (SM) problem has been introduced in this Section and a

mathematical formalization of the problem has been given. Different approaches

under investigation by the partners have been proposed and compared, to the

possible extent. Current and future work is devoted to further specifying and

developing the SM algorithms (also taking into account the interdependencies with

other tasks, as outlined in Section 4.5), their properties and their

effectiveness/efficiency in solving the SM problem.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

66

5. SERVICE PROVISIONING, MANAGEMENT AND

MONITORING

The T-NOVA orchestrator, as defined in previous deliverables [59], is a core

component of the T-NOVA architecture framework. Its primary role is to manage all

network services and virtual network functions lifecycle, over distributed and

virtualised network/IT infrastructures. The T-NOVA orchestrator is required to deploy

and monitor T-NOVA network services by jointly managing network and cloud

resources [6]. This section contains a basic description of the Orchestrator operations

in order to ensure the automated lifecycle management of the orchestrator-related

elements (i.e. network services and virtual network functions), as well as the detailed

dependencies of the core functionalities with the rest of the task.

This section is structured as follows. First, a basic network service definition, including

the abstract data model of the Network Service Descriptor (NSD) complemented with

platform-awareness components from the infrastructure repository is introduced.

Then, a detailed functional architecture of the orchestrator core, mainly containing

the components in order to guarantee service management, provisioning, and

monitoring operations at the orchestrator level is presented. Finally, the different

implementation possibilities to be analysed in the next stage of the work within the

context of the corresponding task are outlined.

5.1. Service Definition and Basic Descriptor

From a T-NOVA perspective, a network service is defined as a composition (graph) of

different network functions. Following ETSI NFV definitions [60], the network service

is defined by its functional and behavioural specification. On the one hand, the

behaviour of the end-to-end service is the result of the combination of the individual

network function behaviours as well as the chaining mechanisms. Thus, it can be said

that, from a deployment perspective, a service is a concatenation of virtual network

functions to be deployed on the corresponding NFV-Infrastructure. On the other

hand, the operational specification of the service is provided in the Network Service

Descriptor (NSD). ETSI defines the NSD as a deployment template for a network

service referencing all other descriptors, which describe components that are part of

the network service [44]. The NSD contains the set of static information elements

used to instantiate and manage a network service over an NFV-enabled

infrastructure. The NSD represents the reference data model to be considered within

the orchestrator.

Figure 5-1 contains the basic network service descriptor included within the

orchestrator. It is compatible with the NSD defined by the ETSI NFV standardisation

group (i.e. it is ETSI compliant), but it includes some enhancements tied to specific T-

NOVA requirements (e.g. platform-awareness).

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

67

Figure 5-1: NSD considered at the orchestrator level

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium 68
68

68

Table 5-1 to Table 5-5 contain the description of the attributes considered in the NSD

and its details.

Table 5-1: NSD detailed attributes description.

Attribute Description Cardinality

Id Identifier of the service descriptor Mandatory

Version Version for the service descriptor Mandatory

Description Description of the service Optional (0..1)

Connection

Points

Ingress and egress point of the service (e.g. virtual port,

virtual NIC, physical NIC address, etc.)
Mandatory

Metadata Metadata associated to the service Optional (0..1)

State

Description of the state of the NS. It can take different

values, depending on whether the NSD refers to a service

in the NS catalogue; or a service instance in the NS

Instances repository.

In the NS Catalogue, the service state can be: on-boarded

(i.e. the NS is ready to be instantiated), and not usable

(i.e. is there any technical or business reason that

prevents instantiation of the service).

In the NS instances repository, the state can be: tear-up,

in progress, instantiated, or terminated.

For the second case, the service instances the state

determines the state of the instantiated service. The state

can be tear-up, in progress, instantiated, or terminated.

The record of the service instances is stored in the

repository.

Mandatory

VNF
The set of VNFs composing the network service. There is

at least one VNF composing the service.

Mandatory

(1..*)

SLA

The associated service level agreement, which needs to

be enforced at the orchestrator level. There is only one

SLA per service, with an associated set of metrics that

should be monitored.

Mandatory

Scaling Policy Automated scaling policies mechanisms Optional (0..*)

VNF Execution

Graph

The specific execution order and connectivity constraints

for the VNF composing the services
Optional (0..1)

Table 5-2: Virtual Network Function.

Attribute Description Cardinality

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

69

VNF Descriptor

The descriptor of the corresponding VNF. Each VNF

has one and only one VNF Descriptor. Details are

provided in the corresponding WP5 deliverable [61]

Mandatory

Platform –

Awareness

Includes platform awareness features

1. Features that are related to a capability of the

physical host but are independent of its

utilization (e.g. DPDK)

2. Features that are related to the specific

instance usage/consumption (e.g. number of

available GPUs)

Optional (0..*)

Table 5-3: Service Level Agreement.

Attribute Description Cardinality

Base Metrics

The generic set metrics common to all the network

services that will be monitored (e.g. infrastructure

metrics, network throughput metrics). The basic

metrics will have an associated threshold for action

initiation. The structure will be <Value, Threshold>,

where Threshold will be in the form of Range <min,

max>, so the SLA Enforcement can be performed

within the Orchestrator.

Mandatory (1..*)

Specific Metrics

The set of specific metrics that can be defined in a

per-service level fashion. This optional metrics may

be different for different services. The structure of the

specific metrics will be the same as the base metrics.

Optional (1..*)

Table 5-4: Scaling Policy.

Attribute Description Cardinality

Service

Deployment

Flavour

This field expresses the classes of service described

by given KPIs. Those KPIs are checked by the system

for each service to proceed with the auto-scale

procedures.

Mandatory (1..*)

Auto Scale

Policy

The specific scaling action that will be taken in case

the condition is accomplished. <action, condition>

are considered as a linked pair. The condition refers

to a KPI contained in the deployment flavour field.

Mandatory (1..*)

Table 5-5: VNF Execution Graph.

Attribute Description Cardinality

Forwarding

Graph (vnffg)

The forwarding graph for a given set of virtual

network functions within the service. There may be

different forwarding graphs for different types of

Mandatory (1..*)

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

70

traffic (signalling, routing) as defined by ETSI. The

graph can be implemented in a number of ways.

Order

Dependencies

Represents the strict dependencies in terms of

execution order for a given set of VNFs composing

the service (e.g. defines source and target VNFs,

where the source is required to be executed before

the target). This field is used to define the sequence

in which various VNFs must be executed.

Optional (0..*)

5.1.1. ETSI NFV MANO Compliance

The following table contains the direct link between the T-NOVA NSD fields and the

ETSI MANO fields, in order to provide the reader with a view of T-NOVA NSD

compliance with ETSI standards.

Table 5-6: T-NOVA NSD links to ETSI MANO NSD.

T-NOVA Attribute ETSI MANO NSD Attribute

Id Id

Version version

Description description

Connection Points connection_point

Metadata -

State -

VNF: EPA -

VNF: VNF Descriptor vnfd

SLA: Base Metrics monitoring_parameter

SLA: Specific Metrics -

Scaling Policy: Service Deployment

Flavour
service_deployment_flavour

Scaling Policy: Auto Scale Policy auto_scale_policy

VNFExecutionGraph: Forwarding

Graph
vnffg

VNFExecutionGraph: Order

Dependencies
vnf_dependency

5.1.2. Beyond ETSI NFV MANO

The standardisation group defines a basic network service descriptor in [62], which

they describe as not a complete list of information elements constituting the NS but

a minimum sub-set needed to on-board the network service.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

71

As a consequence, the T-NOVA NSD goes beyond the basic NSD defined in the

standardisation group. The novel concepts included in the NSD are as follows:

 Platform-awareness: there may be specific platform-constraints when

deploying virtual network functions that are not considered at present (e.g.

intense I/O requirements, ability to access high-performance instructions, or

even direct access to other hardware specific features such as GPUs). This field

of the NSD is based in the Enhanced Platform Awareness mechanism for

OpenStack proposed within the infrastructure repository (Task 3.2). Therefore,

by including this concept in the service descriptor the Orchestrator can

benefit from the intelligent placement of VNFs developed to improve

workload performance. Additionally, ETSI MANO contains the Virtual

Deployment Unit (VDU). It is defined as a construct that can be used in an

information model, supporting the description of the deployment and

operational behaviour of a VNF, or the entire VNF if it was not componentised

in subsets. The VDU is not as specific as the platform-awareness component

in terms of platform hardware details;

 Service Level Agreement: the network service contains one associated SLA.

The SLA comes from the Marketplace, where business agreements are

managed. The SLA will contain two types of metrics. A common base set that

will be common to all the network services considered within T-NOVA.

Additionally VNF/NS specific metrics, which can be utilized or not depending

on customer requirements. SLA enforcement at the orchestrator level will be

performed as a function of the metrics included within the SLA field of the

NSD. The SLA enforcement will be performed as a function of both the base

and the specific metrics. SLA’s at the marketplace level will also include

business and commercial clauses (e.g. penalties, rewards), which are not

considered within the Orchestrator. Although SLAs are not included, ETSI

MANO NSD contains the monitoring parameter field, which enables the

orchestrator to monitor some service parameters;

 Scaling Policy: the T-NOVA NSD includes a definition of the automated

scaling policies at the service level. Even if manually triggered scaling

operations are enabled through the management interfaces at the service (or

even VNF) level, the proposed NSD includes the definition of automated

scaling options for a given service (e.g. once a given threshold is reached for a

given monitored metric, perform a scaling in action), based on the specific

KPIs contained in the service deployment flavour. The mechanism included in

the NSD is built using the <condition, action> pair, which defines the action

to be taken once the KPI condition is accomplished. Scaling at the service

level will contain conditions for modifying structures affecting the whole

service (e.g. connections between VNFs). Specific VNF scaling policies will be

declared in the corresponding VNF Descriptors, and the NSD will inherit them.

The latest ETSI MANO reference document includes an initial field auto-

scaling field for the service.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

72

5.2. Orchestrator Overall Architecture

This section contains the initial description of the core functional architecture of the

orchestrator fundamental blocks, responsible for the service-related functionalities

(i.e. management, provisioning, and monitoring). The architecture has started from

the overall identification of the building blocks for the orchestrator completed within

deliverable D2.31 [6], jointly with the requirements specification and the

functionalities to be implemented at the T-NOVA orchestrator level.

The next step in the orchestrator definition is the identification of the detailed

functional components. It is assumed that each of the detailed functional

components is dedicated to executing one specific task within the different T-NOVA

workflows and use cases.

Four major components within the functional architecture have been identified:

 Network Service Lifecycle Management: includes all the components

devoted to the execution of any task related to service-level lifecycle

management (e.g. service monitoring, service scaling, service provisioning

amongst others). This block also includes the NS Catalogue, the

infrastructure repository, and the NS Instances repository;

 Virtual Network Function Lifecycle Management: includes all the

components devoted to the execution of any task related to virtual network

function lifecycle management (e.g. VNF deployment, VNF monitoring). This

block also includes the VNF Catalogue and the VNF Instances repository;

 External Interfaces: includes all the external interfaces required to interact

with the other T-NOVA architecture components. A new external interface

has been included: the Orchestrator management interface, which will be

used as the management and configuration entry point for the orchestrator

itself;

 Orchestrator Management and Configuration: this functional group was

not considered within the initial functional architecture. It is devoted to basic

management and configuration operations for the orchestrator (e.g. number

of mapping algorithms present, internal metrics to be monitored,

configuration of the service monitoring type, or even user management).

The basic functionalities covered by each one of the major groups have been already

identified and defined in a previous deliverable [6]. For the next iteration, we have

identified functional blocks within each one of the groups, associated to a given

function. The detailed T-NOVA Orchestrator architecture is depicted in Figure 5-2.

The NFStore is also included in that figure, although it is not direct part of the

Orchestrator, to increase readability.

The different components are not stand-alone components. They interact between

them in different manners. The general and high-level workflows for the targeted use

cases have been defined in the corresponding WP2 deliverable [59], and are not to

be included within this deliverable to avoid unnecessary duplicity.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium 73

73

73

Figure 5-2: Overall Orchestrator Architecture.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium 74
74

74

5.2.1. Service Lifecycle Management

This block contains the functional components to support NS lifecycle management,

and its service-level related operations.

The service lifecycle management functional group is composed of a number of

different functionalities, based on the initial description provided in deliverable D2.31

[6]:

 Service Manager: This module manages all the service-related operations. It

is the component responsible for coordinating interactions between the

different functional components within the group. All the requests coming

from the northbound interface (i.e. from the Marketplace) are processed by

this component, which then starts the workflow execution for each request. It

is also responsible for instantiating the VNF Manager(s) when provisioning a

given service;

 Service Mapping: this module is responsible for providing the service

mapping (i.e. the specific VNF placement in order to provision the service).

The service mapping functional block is defined as a black box, with a set of

pre-defined entries and the expected output. The internal details of the

service mapping module are included in Section 4;

 Service Monitoring: this module is responsible for monitoring service-related

metrics and coordinating the different VNF monitoring components, which

are the components responsible for receiving information from the specific

VNF agents. The Service Monitoring module will coordinate data collection

from the specific VNF monitoring modules and will then integrate the data in

order to obtain service-level metrics, which can be directly used by the SLA

Enforcement module. The initial basic metrics included at the VNF level are

explained later, although they do not represent the definitive set of metrics

that will be collected (but the initial one which will be made available from the

VIM to the Orchestrator). Service monitoring will offer an interface to the VNF

Manager (the VNF Monitoring module), which will be used to post monitoring

data by the VNF required to build service-level metrics. The service

monitoring component will pre-process data received from the VNF

monitoring modules (if necessary) in order to build and then store service-

level metrics. Annex 10 contains the whole monitoring chain envisaged for the

orchestrator. Furthermore, the Service Monitoring module will be responsible

for getting information from the network connections between the different

VNFs in situations where the NSD contains a NFV Forwarding Graph. This

includes both the intra-DC network connections and the inter-DC network

connections, managed by the Transport Network Manager. Additionally it will

collect generic infrastructure data utilization and infrastructure metadata from

VIM (from a generic perspective, not specific to any VNF). Service monitoring

will be also responsible for filling the corresponding repositories with all the

information at the service-level (i.e. the NS Monitoring Data and the NS

State). The VNF repositories will be filled by the corresponding VNF

Monitoring components;

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

75

 Service Provisioning: this module is responsible for instantiating a given NS

over the NFV Infrastructure. This implies the following major actions within

the Orchestrator at the service management level:

 Instantiating the corresponding VNF Manager for each of the VNFs

composing the service. There may be a different VNF Manager for

each type of VNF or one common VNF Manager; this is a VNF

Developer decision;

 Configuring the corresponding service management instances (i.e.

configuring service monitoring to be ready to coordinate VNF

Monitoring elements, configure SLA enforcement with the specific

metrics of the NS);

 Requesting specific network connections to deploy the NFV

Forwarding Graph defined in the NSD. This may encompass interaction

with the Transport Network Manager interface in order to request

specific network connections. Actions included in the T-Or-Tm

interface which are utilized by the service for initiating provisioning

are: (i) create network connection; (ii) remove network connection; (iii)

update network connection; and (iv) get network connection

information;

 Request for the required infrastructure at the VIM level to deploy the

VNFs considered within a NS. This includes releasing or updating the

required infrastructure as well as it might include network connections

between different VMs hosting the same VNF within one single DC

infrastructure (i.e. not involving the Transport Network Manager

connectivity services).

 Service Scaling: this module is responsible for coordinating the scaling

actions at the service-level. These actions may be manually (request coming

from the Marketplace) or automatically triggered. The service scaling will not

interact with any other module outside of the service lifecycle management

ones. It will only coordinate the scaling actions by means of utilizing the

functionalities of the other modules. This module will be responsible for

checking the automated scaling policies defined within the NSD. In scenarios

where some of the conditions that are defined are reached, it will trigger the

corresponding action by means of communicating with the service manager,

who will then start triggering the actions which will modify the resources as

expected. For manually triggered actions, which will come directly through the

Northbound interface (i.e. update instantiated NS), the Service Manager will

be the coordinating module;

 SLA Enforcement: this module is responsible for enforcing SLA

accomplishment within the orchestrator. The module will be constantly

retrieving the monitored data from the corresponding repository and

checking the service status is compliant with the negotiated SLA. The metrics

included in the NSD field (i.e. SLA based metrics, and SLA specific metrics) are

monitored and checked for compliance. The specific metrics may change

during service lifecycle (e.g. NS update request received during execution

time from the Marketplace), in this case the SLA Enforcement needs to be

notified and re-configured by the Service Manager.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

76

Besides these functional component descriptions, the Service Manager deals with the

following requests coming from the Marketplace through the Northbound interface.

For further technical details on the interfaces (e.g. rationale, or REST/JSON model

amongst others) please refer to Section 2.

Table 5-7: Service Manager method processing.

Method Description Modules Actions

Create NS

(T-Da-Or)

The marketplace

notifies the

orchestrator about a

new NS (or an

updated one)

Service

Manager, NS

Catalogue

The service manager will process the

NSD and will add a new entry in the

NS Catalogue accordingly. The

status of the service will be created

according to the NSD if the process

ends without any problem.

Instantiate

NS (T-Da-

Or)

The marketplace

requests the

orchestrator to

instantiate and deploy

an existing NS

Service

Manager,

Service

Mapping,

Service

Provisioning

(execution

time: Service

Monitoring,

SLA

Enforcement)

The service manager will process the

request. It will retrieve the NSD

information from the NS repository.

The Service Mapping will be

responsible for calculating the

specific allocation of any given

service over the NFVI (i.e. decide

which physical resources will be

utilized to host the NS). The Service

Provisioning module will be

responsible for (i) instantiating the

corresponding VNF Manager(s) and

triggering the VNF deployment and

the Transport Network connections

(if required). The Service Manager

after provisioning has been

successfully instantiates and

configures SLA Enforcement, Service

Monitoring, and Service Scaling

components.

Update a

NS (T-Da-

Or)

The marketplace

requests to update a

deployed NS

Service

Manager,

Service

Mapping,

Service

Scaling,

Service

Provisioning

The Service Manager processes the

request and triggers service scaling.

This may or may not imply a new

execution of the Service Mapping

algorithm. The Service Scaling

module will be responsible for

coordinating the required actions

before triggering the Service

Provisioning component, which will

directly communicate with the VNF

Manager to proceed with the

update of the required VNFs

composing the service. The specific

actions for updating the service

(scale in/out, up/down) will come

directly associated in the request.

Updates to the SLA and Monitoring

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

77

components will be executed if

necessary.

Get a NS

State (T-Da-

Or)

The marketplace

requests information

of a deployed NS

Service

Manager

The Service Manager will obtain

information on the deployed NS

directory from the NS Instances

Repository, whose state will be

updated within reasonable

timeframes.

5.2.2. NS Instances Repository

This repository contains the basic information on the instantiated services (not the

ones that are only created in the NS Catalogue). NS information is based on the NSD.

Each service in this repository is linked to its corresponding NS Monitoring Data.

5.2.3. NS Monitoring Data Repository

The NS Monitoring Data repository will contain all the monitored data for each NS.

The data may be different for each NS depending on the optional metrics defined in

the corresponding SLA field of the NSD. The NS Monitoring repository is populated

by the corresponding service monitoring component, and may be accessed by

different components depending on the request or internal process executed (e.g.

service scaling, SLA enforcement).

5.2.4. NS Catalogue

The NS catalogue will contain the set of on-boarded NSs. This implies that the NS

catalogue will store all the NSDs, utilizing the aforementioned data model, but

without including the VNF Descriptor, which is stored in the VNF Catalogue.

5.2.5. Implementation Possibilities for the Catalogues

There are various implementation options for the different catalogues and

repositories that will be assessed in order to make the appropriate technology

decision. There are various DBs approaches including relational DBs (e.g. PostgreSQL,

or MySQL) and non-relational DBs (e.g. MongoDB, Apache Cassandra, or even Riak

amongst others). A micro-services [43, 44] architectural pattern may also be applied

at the orchestrator level, which may have an impact on the different repositories. This

option will be analysed in detail during the next stage of the orchestrator

implementation.

Several constraints need to be considered in order to take the technology decision

for the catalogues and repositories (e.g. service inter-arrival time, service-related NSD

data size, access frequency, update frequency, or even physical location of the

repositories).

The repositories will be analysed on an individual basis in order to take the final

technology implementation decision.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

78

5.2.6. Infrastructure Repository

Please refer to Section 3 for further details on how the infrastructure repository will

be implemented.

5.2.7. VNF Lifecycle Management

This component is devoted to the management of the VNF lifecycle. There will be

one generic VNF Manager; in addition some VNFs may provide their own specific

VNF Manager. In this scenario the T-NOVA Orchestrator (through the Service

Provisioning module) will instantiate the specified VNF Manager, instead of

instantiating the default one.

This section contains the description of the default VNF Manager and its associated

functionalities, which are depicted in Figure 6.2. Where specific VNF Managers are

implemented for VNFs, the functionalities to be covered are still the same, although

the implementation may differ from the implementation of the default VNF Manager.

The VNF Manager is the component that will coordinate all the VNF-related

operations within the orchestrator. The VNF Manager in turn will be coordinated by

the Service Manager in order to ensure service continuity in terms of both

management and monitoring.

5.2.7.1. VNF Deployment

The VNF deployment will be responsible for the instantiation and/or termination of

different VNFs, following the generic instructions of the VNF Manager, which is

coordinated by the Service Manager component. Once the VNF Deployment

instantiates (through the Vnfm-Vnf interface) a given VNF, the VNF Manager will

coordinate and configure the VNF Monitor and VNF Scaling components accordingly

to enable all the operations over the VNFs in terms of management, and monitoring.

5.2.7.2. VNF Monitoring

This is the module responsible for receiving all the available VNF information. The

information from the VNF will be obtained through the Vnfm-Vnf interface. The

metrics to be collected per each VNF will be described in the corresponding VNF

Descriptor.

The VNF Monitor will offer a REST interface that the corresponding VNF Monitoring

Agent will utilize in order to post information associated to the metrics. The VNF

Monitor will then populate the corresponding VNF Repository Data, at the same time

it is coordinated by the corresponding service monitoring module, which will process

(if required) the received information in order to build service-level information.

For the moment, initial metrics that can be exposed by the VIM Monitoring Manager

as defined in WP4 follow:

In the VM/VNF Domain:

 CPU Utilisation

 No. of VCPUs

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

79

 RAM allocated

 RAM available

 Disk read/write rate

 Network interface in/out bit rate

 Network interface in/out packet rate

 No. of processes

In the Compute Node:

 CPU utilisation

 Available RAM

 Disk read/write rate

 Network i/f in/out rate

In the Storage:

 Read/Write rate

 Free Space

In the Network:

 Port in/out bit rate

 Port in/out packet rate

 Port in/out drops

Further information on these metrics is provided in the corresponding WP4

deliverable [57]. VNF Monitoring will also include an option to push metadata

information for the given VNF.

5.2.7.3. VNF Scaling

The VNF Scaling component will be responsible for requesting appropriate scaling

(i.e. in/out up/down) by the VIM. VNF scaling will utilise the VNF Monitoring Data in

the repository in order to check the necessity of automatically scaling a given VNF.

The VNF Descriptor will include all the scaling conditions for each VNF. These

conditions are the ones that will be evaluated by the VNF Scaling.

5.2.7.4. VNF Catalogue

This catalogue is directly populated from the NF Store through the proposed

REST/JSON interface (Please refer to Section 2 for further details of the interface). The

Service Manager uses this catalogue to instantiate NSs, so the corresponding

information from the VNFs composing the service can be used.

The VNF catalogue will store the available VNFs in the NF Store. It will contain an

identifier for the VNF, the name, a link to the VNF image, and the VNF Descriptor,

which completely details the VNF in terms of requirements and deployment

dependencies. It may contain a link to the specific VNF Manager (optional) of the

VNF.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

80

5.2.7.5. VNF Instances Repository

Equivalent to the NS Instances Repository, this VNF repository will contain the basic

information, based on the VNF Descriptor, of the instantiated VNFs. This repository

will be linked to the NS Instances repository. Each VNF instance in this repository is

linked to the VNF Monitoring Data.

5.2.7.6. VNF Monitoring Data

This repository contains the monitored data associated with the instantiated VNFs.

The metrics to be monitored by the corresponding VNF agents are defined in the

VNF Descriptor. The data may be different for each VNF, depending on the specific

descriptor of the service.

The VNF Monitor module receives the data from the VNF Agent, and then fills the

VNF Monitoring Data repository, where all the VNF-related data is stored. The

repository may be accessed at any time by different components within the

orchestrator.

5.2.8. External Interfaces

Please refer to Section 2 for further details on the external interfaces (northbound

and southbound).

The management interface will primarily be used for the graphical user interface that

will act as the internal system manager for the orchestrator. Details of the operations,

monitoring options, and configuration envisaged are provided in the next sub-

section.

The Web-based User Interface will be used as the management and configuration

point of entry for the orchestrator. The GUI will enable mainly two major actions: (i) to

visualize all the information stored in the different catalogues and repositories in a

centralized manner, as well as to monitor all orchestrator system metrics (see next

section); and (ii) to configure specific options for the orchestrator software system

itself (e.g. logging levels).

The UI will be a stand-alone service, deployed independently from the orchestrator. It

will run separately in a single web server (e.g. Tomcat), and will mainly use the

different external interfaces of the orchestrator to retrieve the required information

(or to send different configuration actions). For the sake of simplicity, the UI will

primarily connect to the orchestrator through the management interface, avoiding

the use the Northbound and Southbound interfaces. The basic functionalities of the

UI will be provided through the REST management interface and will be directly

handled by the orchestrator management and configuration component of the

architecture.

The initial technology analysis for the graphical user interface is currently being

performed. Tools and Frameworks like Ruby-on-Rails, Spring Framework, JQuery,

and D3.js are some of the candidates that could be used to build the visual tool.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

81

5.2.9. Internal Management and Configuration

This module is responsible for all the internal management and feasible configuration

of the orchestrator itself. Being a software system, it requires some components for

internal functional monitoring. Furthermore a web-based graphical interface tool will

enable interaction with these different features through the east/west management

interface of the orchestrator that will be specified and implemented in the next stage

of the Task 3.4 execution plan.

5.2.9.1. Internal Monitoring

Generic Orchestrator information will include the following business metrics, which

will contain mainly information relating to the internal components of the

orchestrator as well as information on the relationships between the orchestrator and

the other T-NOVA components. This information will be stored in the corresponding

repositories within the internal management component. The component may

interact directly with other components of the orchestrator in order to retrieve further

information.

Table 5-8: Internal Business Metrics Monitoring.

Name Description Unit

#Create NS requests

Provides information on the number of created based

on NS requests received from the Marketplace and

their result (HTTP code only)

Integer

#Instantiate NS

requests

Provides information on the number of NS

instantiation requests received from the Marketplace

and their result (HTTP code only)

Integer

#Terminate NS

requests

Provides information on the number of NS

termination requests received from the Marketplace

and their result (HTTP code only)

Integer

#Update NS requests

Provides information on the number of NS update

requests received from the Marketplace and their

result (HTTP code only)

Integer

#Create VNF request

Provides information on the number of VNF creation

requests received from the NF Store at the

orchestrator and their result (HTTP code only)

Integer

#NS Scaling

Requests

Provides information on the number of manually

triggered NS Scaling requests have been received
Integer

#NS Scaling Actions
Provides information on the number of automatically

triggered NS Scaling requests within the orchestrator
Integer

#SLA breaches

Provides information on the number of SLA breaches

measured by the SLA enforcement module of the

orchestrator

Integer

#SM Request
Number of service mapping requests performed by

the algorithm
Integer

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

82

%SM Rate
Percentage of the successful mapping requests

completed

Percent

age

SM Execution Time The average execution time of a mapping request ms

#SM Requests The number of service mapping requests Integer

%SM Failed

Requests
7

The percentage of failed service mapping requests %

This information will be exposed via a REST API and a web based GUI that can be

viewed by the Orchestrator’s administrator. Furthermore, this component will also be

capable of exposing the size of the different repositories, mainly focusing on the

monitored data of the instantiated NSs and VNFs.

In circumstances where the manager considers there is an issue with the orchestrator,

the internal management system will enable temporal monitoring of some system-

related metrics. This monitoring will be manually configurable from the REST

interface.

The system-level monitoring will enable measurement of:

 Latency and throughput of the Orchestrator’s external interfaces

 CPU and Disk usage by the Orchestrator’s execution environment

It will also be possible to monitor application-level metrics in a holistic manner,

enabling the identification of problems. This application monitoring will be disabled

by default due to resources constraints within the orchestrator. However, if required,

it can be enabled through the REST API.

5.2.9.2. Internal Configuration

Besides the internal monitoring metrics, this module will also be capable of

configuring the orchestrator software platform. Initial configurations possible are

related to:

 Service mapping algorithm priority list, in case there is more than one

implementation of the mapping algorithm;

 Repositories configurations (enabled by the technology selected);

 Interfaces configuration;

 Start-up information required for the orchestrator booting system.

5.2.9.3. User Management

Furthermore, the internal management module will contain basic user management

features. User management features will be the base for the Authentication and

Authorization features to be included in the external interfaces of the orchestrator.

7
 A high value of failed Service Mapping requests could have two different reasons: either the

algorithm is not correct or there is a lack of resources. Therefore, the reason why a certain

request is considered not feasible should also be stored (and available for reading).

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

83

T-NOVA will not implement novel Authentication and Authorization concepts; instead

it will rely on existing ones. The User Management will be performed through the

web-based user interface of the orchestrator.

5.3. Relationship and Inter Task Dependencies

Task 3.4, Service Provisioning, Management and Monitoring is devoted to implement

the T-NOVA orchestrator, including components from the other three tasks of the

work package. The NSD as the initial and basic data model to be considered at the

orchestrator level has been detailed, as well as the functional architecture to be

implemented during the next stages of the project lifecycle. However, this requires

interactions in terms of the outputs of supporting tasks and providing input into

other tasks to ensure appropriate alignment with architecture and functionalities of

the Orchestrator.

The dependencies of this Task3.4 other T-NOVA tasks are outlined in Table 5-9.

Table 5-9: Inter-tasks dependencies from Task3.4, Service Provisioning, Management

and Monitoring.

Task Dependency Description

Task 3.1: Orchestrator Interfaces

All the interfaces specification (e.g. REST

structure and hierarchy of the

northbound and southbound interfaces,

expected HTTP results and behaviour,

JSON objects, or even the syntactic pre-

processing) will come from this task. Task

3.4 will integrate this into the different

service management workflows

Task 3.2: Infrastructure repository

This task will be used mainly for: (i)

including available infrastructure-related

(i.e. static/basic metrics) information in

the SLA metrics to be monitored; and (ii)

enabling the orchestrator to retrieve any

kind of information regarding the NFV

infrastructure. Dynamic metrics will be

provided by Task 4.4

Task 3.3: Service mapping

This task will implement the specific

mapping algorithms, which will be

included within the orchestrator (i.e. in

the corresponding service lifecycle

management internal module). The

execution of the mapping algorithm can

take place outside of the orchestrator; a

single wrapper will use as the interface to

include accordingly the results of the

algorithm execution.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

84

5.4. Conclusions and Future Work

This section contains the detailed functional architecture of the Orchestrator, built

utilising the functional descriptions and requirements identified in the previous work

package two deliverables. The architecture is composed of three major blocks, each

one of them focused on a different functionality of the orchestrator (e.g. service-level

management, or VNF-level management). The functional modules at the service-level

have been related to the different interface actions defined in sub-section 5.2.

Furthermore, the Network Service Descriptor that will be considered within the

orchestrator is presented, with the specification of all the parameters required from

the T-NOVA perspective, extending the minimum set of fields to be present as

defined by ETSI NFV in the basic NSD.

The relationship of this task with the other tasks of the work package is also included,

defining the expected interactions between the different components of the whole

system.

The next logical steps for the service management, provisioning, and monitoring

tasks include two major milestones (and decision points):

 Technology selection for the implementation of the core internal components.

There are different options for the management components of the

Orchestrator, which need to be completely integrated with the rest of the T-

NOVA components.

 Drafting of the software development plan for the second year of the project.

Task 3.4 will develop the prototype for the functional architecture of the T-

NOVA orchestrator, which has been presented in this manuscript. The

software development task will be responsible for building the prototype

based on the functional architecture, and the interfaces specification.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

85

6. CONCLUSIONS

Two distinct kinds of interfaces have been identified in the T-NOVA Orchestrator

platform:

 The first interface category is commonly found in Information Systems is a

Northbound interface that is utilised to provide connectivity with the NF Store

and the Marketplace;

 The second category of interface which is Southbound orientated is used to

provide connectivity, with the VIM and the VNFs This interface will handle very

high rates of metrics related data generated by the NFVI and the VNF’s/NS’s it

is hosting.

The requirement for high data bandwidth support lead Task 3.1 to study tools and

frameworks in the Streaming Data Processing area in addition to the common forms

of interfacing two systems namely RESTful API’s with JSON data object exchanged

over HTTP. Supplementary work and experimentation with these tools and

frameworks is still required in order to identify the mostly appropriate candidate

solutions. More detailed specifications are under development for all expected

system the operations, together with the other interfacing sub-systems: the NF Store,

the Marketplace, the VIM and the VNFs.

Task 3.2 has conducted an analysis based on the candidate technologies that have

been selected for the initial implementation of the T-NOVA IVM. Different options to

retrieve infrastructural information have been identified and one has been elected for

implementation evaluation. This solution extends the currently REST API

implementation of OpenStack and OpenDaylight with a standalone repository of

infrastructure information with new REST API’s. This implementation is being

designed in a manner to maintain as much compatibility with the current releases of

the technologies while addressing the information deficits required to provide

Enhanced Platform Awareness (EPA). This feature will play a pivotal role in supporting

intelligent orchestration of VNF instantiation on virtualised cloud and compute

infrastructures. The next step for Task 3.2 is to extend OpenStack beyond the current

scheduling and filtering implementation in order to support the utilisation EPA data

for the scheduling VNF specific resource e.g. SR-IOV capable NIC’s etc.

This Service Mapping problem, i.e., the automatic determination of which resources

to use in which Data Centres, has been clearly defined, and its objectives discussed,

by Task 3.3, which led to the definition and discussion of various possible approaches

to solve the problem. Further work is still needed to evaluate and implement each of

the proposed approaches.

The initial functional architecture for the Orchestrator has been developed by Task

3.4. The architecture is composed of five major blocks, each one focusing in a group

of functionalities: Service-level Management, VNF-level management, data storage,

External Interfaces, and internal Management and Configuration. One of the most

crucial and complex data structures to be exchanged between the Orchestrator and

the Marketplace, the ETSI’s Network Service Descriptor, has been extended with all

the parameters required from the T-NOVA system defined. The next steps for Task

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

86

3.4 are to select the implementation technology stack for the core internal

components and to draft a software development plan for the prototype of the T-

NOVA Orchestrator, capable of supporting the above described features and using

the selected frameworks.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

87

7. REFERENCES

[1] The 8 Requirements of Real-Time Stream Processing, Stonebraker, M.,

Çetintemel, U. and Zdonik, S. (http://cs.brown.edu/%7Eugur/8rulesSigRec.pdf)

[2] Apache Samza: LinkedIn's Real-time Stream Processing Framework, by

Riccomini, C. (https://engineering.linkedin.com/data-streams/apache-samza-

linkedins-real-time-stream-processing-framework)

[3] What is Hadoop? (http://www-

01.ibm.com/software/data/infosphere/hadoop/)

[4] Storm Project (http://storm-project.net/)

[5] MapReduce: Simplified Data Processing on Large Clusters, Dean, J. and

Ghemawat, S. (http://research.google.com/archive/mapreduce.html)

[6] T-NOVA Deliverable D2.31: Specification of the Infrastructure Virtualisation,

Management, and Orchestration – Interim, Gamelas, A. et al.

[7] OpenStack’s Glance API

(http://docs.openstack.org/developer/glance/glanceapi.html)

[8] OpenStack’s Compute API (http://developer.openstack.org/api-ref-compute-

v2-ext.html)

[9] Architectural Styles and the Design of Network-based Software Architectures,

Fielding, R. (http://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm)

[10] 10 Best practices for better REST-full API, Jauker, S., 2014,

(http://blog.mwaysolutions.com/2014/06/05/10-best-practices-for-better-

restful-api/)

[11] {json:api} (http://jsonapi.org/)

[12] Apache Storm (http://storm.incubator.apache.org/)

[13] Apache Spark Streaming (https://spark.apache.org/streaming/)

[14] Apache Samza (http://samza.incubator.apache.org)

[15] Apache Thrift (https://thrift.apache.org)

[16] RabitMQ (http://www.rabbitmq.com/)

[17] Apache Kafka (http://kafka.apache.org/)

[18] Twitter (http://twitter.com)

[19] The (Twitter’s) Streaming APIs (https://dev.twitter.com/streaming/overview)

[20] Storm vs. Spark Streaming: Side-by-side comparison, Huynh, X.

(http://xinhstechblog.blogspot.pt/2014/06/storm-vs-spark-streaming-side-by-

side.html)

[21] Monasca framework (https://www.openstack.org/assets/presentation-

media/Monasca-Deep-Dive-Paris-Summit.pdf/)

[22] Apache Hadoop NextGen MapReduce (YARN)

(http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-

site/YARN.html)

[23] Apache Mesos (http://mesos.apache.org/)

http://cs.brown.edu/~ugur/8rulesSigRec.pdf
https://engineering.linkedin.com/data-streams/apache-samza-linkedins-real-time-stream-processing-framework
https://engineering.linkedin.com/data-streams/apache-samza-linkedins-real-time-stream-processing-framework
http://storm-project.net/
http://docs.openstack.org/developer/glance/glanceapi.html
http://developer.openstack.org/api-ref-compute-v2-ext.html
http://developer.openstack.org/api-ref-compute-v2-ext.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://blog.mwaysolutions.com/2014/06/05/10-best-practices-for-better-restful-api/
http://blog.mwaysolutions.com/2014/06/05/10-best-practices-for-better-restful-api/
http://jsonapi.org/
http://storm.incubator.apache.org/
https://thrift.apache.org/
http://kafka.apache.org/
http://twitter.com/
http://xinhstechblog.blogspot.pt/2014/06/storm-vs-spark-streaming-side-by-side.html
http://xinhstechblog.blogspot.pt/2014/06/storm-vs-spark-streaming-side-by-side.html
https://www.openstack.org/assets/presentation-media/Monasca-Deep-Dive-Paris-Summit.pdf/
https://www.openstack.org/assets/presentation-media/Monasca-Deep-Dive-Paris-Summit.pdf/
http://mesos.apache.org/

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

88

[24] LinkedIn (http://linkedin.com)

[25] Survey of Distributed Stream Processing for Large Stream Sources,

Kamburugamuve, S.

(http://grids.ucs.indiana.edu/ptliupages/publications/survey_stream_processin

g.pdf)

[26] Samza vs. Spark Streaming

(http://samza.incubator.apache.org/learn/documentation/0.7.0/comparisons/s

park-streaming.html)

[27] In-Stream Big Data Processing

(https://highlyscalable.wordpress.com/2013/08/20/in-stream-big-data-

processing/)

[28] Why We Didn’t Use Kafka for a Very Kafka-Shaped Problem

(http://engineering.onlive.com/2013/12/12/didnt-use-kafka/)

[29] Java programming language (https://www.oracle.com/java/)

[30] Questioning the Lambda Architecture, Kreps, J.

(http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html)

[31] Sneak peek: Google Cloud Dataflow, a Cloud-native data processing service

(http://googlecloudplatform.blogspot.pt/2014/06/sneak-peek-google-cloud-

dataflow-a-cloud-native-data-processing-service.html)

[32] REST vs. SOAP: How to choose the best Web service, Dhingra, S.

(http://searchsoa.techtarget.com/tip/REST-vs-SOAP-How-to-choose-the-best-

Web-service)

[33] W3C Web-Services Architectural Group (http://www.w3.org/2002/ws/arch/)

[34] Protocol Buffers Overview (https://developers.google.com/protocol-

buffers/docs/overview)

[35] Message Pack (http://msgpack.org/)

[36] Twitter Will Open-Source Storm, BackType's "Hadoop of Real-Time Processing,

Finley, K. (http://readwrite.com/2011/08/05/twitter-will-open-source-storm)

[37] Berkeley University of California (http://berkeley.edu/)

[38] Java Virtual Machine Specification

(https://docs.oracle.com/javase/specs/jvms/se8/html/)

[39] Clojure programming language (http://clojure.org/)

[40] Scala programming language (http://www.scala-lang.org)

[41] Task-parallelism (http://en.wikipedia.org/wiki/Task_parallelism)

[42] Data-parallelism (http://en.wikipedia.org/wiki/Data_parallelism)

[43] OpenStack Icehouse Release Notes

(https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse)

[44] Redfish Specification (http://www.redfishspecification.org/)

http://linkedin.com/
http://grids.ucs.indiana.edu/ptliupages/publications/survey_stream_processing.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/survey_stream_processing.pdf
http://samza.incubator.apache.org/learn/documentation/0.7.0/comparisons/spark-streaming.html
http://samza.incubator.apache.org/learn/documentation/0.7.0/comparisons/spark-streaming.html
https://highlyscalable.wordpress.com/2013/08/20/in-stream-big-data-processing/
https://highlyscalable.wordpress.com/2013/08/20/in-stream-big-data-processing/
https://www.oracle.com/java/
http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html
http://googlecloudplatform.blogspot.pt/2014/06/sneak-peek-google-cloud-dataflow-a-cloud-native-data-processing-service.html
http://googlecloudplatform.blogspot.pt/2014/06/sneak-peek-google-cloud-dataflow-a-cloud-native-data-processing-service.html
http://searchsoa.techtarget.com/tip/REST-vs-SOAP-How-to-choose-the-best-Web-service
http://searchsoa.techtarget.com/tip/REST-vs-SOAP-How-to-choose-the-best-Web-service
http://www.w3.org/2002/ws/arch/
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/overview
http://readwrite.com/2011/08/05/twitter-will-open-source-storm
http://berkeley.edu/
http://clojure.org/
http://www.scala-lang.org/
http://en.wikipedia.org/wiki/Task_parallelism
http://en.wikipedia.org/wiki/Data_parallelism
https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse
http://www.redfishspecification.org/

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

89

[45] Intel IPMI (http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-

home.html)

[46] DMTF Desktop Management Interface (http://www.dmtf.org/standards/dmi)

[47] DMTF Cloud Management Initiative (http://dmtf.org/standards/cloud)

[48] OpenStack REST API (http://developer.openstack.org/api-ref.html)

[49] OpenDayLight API

(https://wiki.opendaylight.org/view/OpenDaylight_Controller:REST_Reference_

and_Authentication)

[50] OpenStack PCI-API Support (https://wiki.openstack.org/wiki/Pci-api-support)

[51] ETSI GS NFV 002

(http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v

010101p.pdf)

[52] Virtual Network Embedding: A Survey, Fischer A., Botero J.F., Beck M.T., de

Meer H. and Hesselbach X., IEEE Communications Surveys & Tutorials, v. 15, n.

4, Fourth Quarter 2013

[53] On the complex scheduling formulation of virtual network functions over optical

networks, Ferrer Riera, J., Hesselbach, X. et al, ICTON 2014 (Invited)

[54] Virtual Network Function Scheduling: Concept and Challenges, Ferrer Riera, J.,

Batalle, J., et al, SACONET 2014 (Invited)

[55] Complex Scheduling, Brucker, P., Knust, S., Springer Berlin-Heidelberg. ISBN-10

3-540-29545-3

[56] A resource allocation algorithm of multi-cloud resources based on Markov

Decision Process, Oddi, G., Panfili, M., Pietrabissa, A., Suraci, V., Zuccaro, L., 5th

IEEE International Conference on Cloud Computing Technology and Science

(IEEE CloudCom 2013), 2-5 December 2013, Bristol, UK

[57] T-NOVA Deliverable D4.01: Interim Report on Infrastructure Virtualisation and

Management, McGrath, M., et al.

[58] OpenStack Icehouse Nova Scheduling Configuration Guide,

(http://docs.openstack.org/icehouse/config-

reference/content/section_compute-scheduler.html)

[59] T-NOVA Deliverable D2.21: Overall System Architecture and Interfaces, Xilouris,

G., et al.

[60] ETSI ISG NFV: GS-NFV-003 Network Functions Virtualisation (NFV); Terminlogy

for main concepts in NFV. 2013-10

[61] T-NOVA Deliverable D5.01:Interim Report on Network Functions and associated

Framework, Comi, P. et al.

[62] ETIS ISG NFV: GS-MAN-001 Network Function Virtualization (NFV)

Management and Orchestration. 2014-11

(http://docbox.etsi.org/ISG/NFV/Open/Latest_Drafts/nfv-man001v081

management and orchestration.pdf)

http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html
http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html
http://www.dmtf.org/standards/dmi
http://dmtf.org/standards/cloud
http://developer.openstack.org/api-ref.html
https://wiki.opendaylight.org/view/OpenDaylight_Controller:REST_Reference_and_Authentication
https://wiki.opendaylight.org/view/OpenDaylight_Controller:REST_Reference_and_Authentication
https://wiki.openstack.org/wiki/Pci-api-support
http://docs.openstack.org/icehouse/config-reference/content/section_compute-scheduler.html
http://docs.openstack.org/icehouse/config-reference/content/section_compute-scheduler.html

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

90

[63] Micro-Services Architecture (http://microservices.io/)

[64] Micro-Services Resources (http://blog.arkency.com/2014/07/microservices-

72-resources/)

[65] GitHub Developer API Overview (https://developer.github.com/v3)

[66] HTTP API design (https://github.com/interagent/http-api-design)

[67] GitHub (http://github.com)

[68] Heroku (http://heroku.com)

[69] Web Linking (http://tools.ietf.org/html/rfc5988)

[70] ISO 8601

(https://www.dmoz.org/Science/Reference/Standards/Individual_Standards/IS

O_8601)

http://microservices.io/
http://blog.arkency.com/2014/07/microservices-72-resources/
http://blog.arkency.com/2014/07/microservices-72-resources/
https://developer.github.com/v3
https://github.com/interagent/http-api-design
http://github.com/
http://tools.ietf.org/html/rfc5988
https://www.dmoz.org/Science/Reference/Standards/Individual_Standards/ISO_8601
https://www.dmoz.org/Science/Reference/Standards/Individual_Standards/ISO_8601

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

91

8. LIST OF ACRONYMS

Acronym Explanation

API Application Programming Interface

CIMI Cloud Infrastructure Management Interface

DC Data Centre

DMI Desktop Management Interface

DMTF Distributed Management Task Force

DPDK Data Plane Development Kit

EPA Enhanced Platform Awareness

ETSI European Telecommunications Standards Institute

HDFS Highly Distributed File System

HTTP Hyper-Text Transfer Protocol

ILP Integer Linear Programming

IPMI Intelligent Platform Management Interface

JSON JavaScript Object Notation

MANO (ETSI NFV) Management and Orchestration

MDP Markov Decision Problem

MIF Management Information Format

ML Modular Layer

NAT Network Address Translator

NFS, NF

Store

Network Function Store

NFV Network Functions Virtualization

NI Network Infrastructure

NS Network Service

NSD Network Service Descriptor

Or-Vi Interface between the Orchestrator and the VIM

PoP Point of Presence

QoS Quality of Service

RCSP Resource Constrained Project Scheduling Problem

SLA Service Level Agreement

SM Service Mapping

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

92

SP Service Provider

SR-IOV Single Root I/O Virtualization

T-Ac-Or Interface between T-NOVA Accounting (Marketplace

module) and the Orchestrator

T-Br-Or Interface between T-NOVA Brokerage (Marketplace

module) and the Orchestrator

T-Da-Or Interface between T-NOVA Dashboard (Marketplace

module) and the Orchestrator

T-Sla-Or Interface between T-NOVA Servile Level Agreement

(Marketplace module) and the Orchestrator

VCPU Virtual CPU

VIM Virtual Infrastructure Manager

VM Virtual Machine

VNE Virtual Network Embedding

VNF Virtual Network Function

VNFc Virtual Network Function component

VNFD Virtual Network Function Descriptor

VNFM Virtual Network Function Manager

Vnfm-Vnf Interface between the VNF Manager and VNFs

vNIC virtual Network Interface Controller

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

93

Annexes

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

94

9. ANNEX A: THE ORCHESTRATOR API

This Annex lists the options and standards supporting the Orchestrator’s APIs, as well

as the APIs them selfs.

9.1. Base URL

As a base URL, propose something like

http(s)://apis.t-nova.eu/v1

this base URL will be referred to below as

<base-url>

9.2. Formats and conventions

For formats and conventions the GitHub Developer API is followed [65] and [66].

These guides describe a set of HTTP+JSON API design practices, that were originally

extracted from the work of both GitHub [67] and Heroku [68] while designing their

platform’s API. We do not intend to establish the way to design such kind of APIs (in

fact, these two references have some inconsistencies between them), but instead look

for a good and consistent way to design the APIs.

9.2.1. Authentication and Authorization

At this early stage authentication or authorization are currently not in scope, since

additional work with the interfacing systems is required.

9.2.2. Pagination

Requests that return multiple items will be paginated to 20 items by default.

Additional pages can be requested with the ?offset parameter. For some resources, a

custom page size up to 100 with the ?limit parameter can be set.

An example of this would be:

$ curl '<base-url>/vnfs/?offset=2&limit=100'

Note that page numbering is 1-based and that omitting the ?offset parameter will

return the first page. The pagination information is included in the Link header [69],

and it is considered a good practice to follow these link header values (instead of

constructing the URLs by hand). This link data looks something like:

Link: <<base-url>/vnfs/?offset=3&limit=100>;

rel="next", <<base-url>/vnfs/?offset=50&limit=100>;

rel="last"

The possible rel values are shown in Table 9-1.

Table 9-1: Possible values for the rel parameter in linking web pages.

Name Shows the URL of the

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

95

next Immediate next page of results

last Last page of results

first First page of results

prev Immediate previous page of

results

9.2.3. Querying, Sorting and Filtering

Fields who can be queried, sorted or filtered, for performance reasons as described in

the following sections.

9.2.4. Timestamps format

All timestamps are returned in ISO 8601 [70] format:

YYYY-MM-DDTHH:MM:SSZ

An example of this is:

"2014-11-21T10:18:23Z"

9.3. Standard Return Codes and Errors

The project will use standard HTTP API return codes and errors shown in Table 9-2.

Table 9-2: Standard HTTP return codes and errors to be used.

Code Description

200 OK: Everything is working

201 OK: New resource has been created

204 OK: The resource was successfully deleted

304 Not Modified: The client can use cached data

400 Bad Request: The request was invalid or cannot be served. The exact

error should be explained in the error payload. E.g. „The JSON is not

valid“

401 Unauthorized: The request requires an user authentication.

403 Forbidden: The server understood the request, but is refusing it or the

access is not allowed.

404 Not found: There is no resource behind the URI.

422 Unprocessable Entity: Should be used if the server cannot process the

entity, e.g. if an image cannot be formatted or mandatory fields are

missing in the payload.

500 Internal Server Error: API developers should avoid this error. If an error

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

96

occurs in the global catch blog, the stack trace should be logged and not

returned as response.

9.4. Proposed interfaces

This sub-section specifies some of the Orchestrator’s external interfaces. Further work

is still needed with the other Work Packages (WP4, WP5 and WP6) in order achieve

an optimal solution for the T-NOVA architecture. Definition of the interfaces that can

be called from the interfacing systems, and will work with them to specify the

interfaces the Orchestrator will call is still in progress.

As outlined above, a REST abstraction of the interface architecture will be used with

the JSON data-interchange format over HTTP. Possible errors for each operation are

defined in section 9.3.

9.4.1. Orchestrator and NFStore Interactions

The NFStore calls the Orchestrator to announce new or updated VNFs, to monitor

VNF usage or to delete an unused VNF.

9.4.1.1. Create a VNF

Adds a new VNF to the VNF Catalogue.

The decision about whether this method should respond synchronously or

asynchronously has not yet been taken.

Method

and

Endpoint:

POST

/orchestrator/vnfs

Parameters

:

 name (string). Required. Name of the VNF to be created;

 vnf-image (string). Required. URL of the VNF image, to be used

when provisioning the VNF as part of a NS.

 vnf-manager (string). URL for the manager specific to the VNF

Sample

request:
$ curl -X POST <base-url>+'/orchestrator/vnfs' \

-H 'Content-Type: application/json' \

-d \

'{

 "name": "vnf-one",

 "vnf-image": "https://api.t-nova.eu/v1/nfstore/vnfs/123/image"

}'

Sample

response:
Status: 201 OK

Location: https://api.t-nova.eu/v1/orchestrator/vnfs/123

{

"id":"123",

"name":"vnf-one",

"vnf-image": "https://api.t-nova.eu/v1/nfstore/vnf/123/image",

"vnf-manager": "",

"created_at":"2014-11-21T14:18:09Z",

"updated_at":"2014-11-21T14:18:09Z"

}

https://api.t-nova.eu/v1/nfstore/vnfs/123/image
https://api.t-nova.eu/v1/orchestrator/vnfs/123
https://api.t-nova.eu/v1/nfstore/vnf/123/image

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

97

9.4.1.2. Update a VNF

Updates an existing VNF.

The decision about whether this method should respond synchronously or

asynchronously has not yet been taken. Also not taken is the decision on wheter an

update should use PUT or PATCH: a PATCH should be preferred to a PUT whenever

updating only part of a resource, but using the former implies careful design to

ensure atomicity (i.e., any GET on the same resource must be blocked and wait for the

PATCH is complete), while the later is atomic but may imply a significant overhead

when updating complex resources.

Method

and

Endpoint:

PUT

/orchestrator/vnfs/<vnf_id>

Parameters

:

 name (string). Required. Name of the VNF to be created;

 vnf-image (string). Required. URL of the VNF image, to be used

when provisioning the VNF as part of a NS;

 vnf-manager (string). URL for the manager specific to the VNF.

Sample

request:
$ curl -X PUT <base-url>+'/orchestrator/vnfs/123' \

-H 'Content-Type: application/json' \

-d \

'{

 "name": "new-vnf-one-name ",

 "vnf-image": "https://api.t-nova.eu/v1/nfstore/vnfs/123/image"

}'

Sample

response:
Status: 201 OK

Location: https://api.t-nova.eu/v1/orchestrator/vnfs/123

{

"id":"123",

"name":"new-vnf-one-name",

"vnf-image": "https://api.t-nova.eu/v1/nfstore/vnfs/123/image",

"vnf-manager": "",

"created_at":"2014-11-21T14:18:09Z",

"updated_at":"2014-12-03T10:38:53Z"

}

9.4.1.3. Delete a VNF

Deletes an existing VNF.

Method

and

Endpoint:

DELETE

/orchestrator/vnfs/<vnf_id>

Parameters

:

(none)

Sample

request:
$ curl -X POST <base-url>+'/orchestrator/vnfs/123' \

-H 'Content-Type: application/json'

Sample

response:
Status: 204 OK

Location: https://api.t-nova.eu/v1/orchestrator/vnfs/123

{

"id":"123",

"name":"new-vnf-one-name",

https://api.t-nova.eu/v1/nfstore/vnfs/123/image
https://api.t-nova.eu/v1/orchestrator/vnfs/123
https://api.t-nova.eu/v1/nfstore/vnfs/123/image
https://api.t-nova.eu/v1/orchestrator/vnfs/123

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

98

"vnf-image": "https://api.t-nova.eu/v1/nfstore/vnfs/123/image",

"vnf-manager": "",

"created_at":"2014-11-21T14:18:09Z",

"updated_at":"2014-12-03T10:38:53Z"

}

9.4.1.4. Show a VNF

Returns a specific VNF’s data.

Method

and

Endpoint:

GET

/orchestrator/vnfs/<vnf_id>

Parameters

:

None

Sample

request:
$ curl <base-url>+'/orchestrator/vnfs/123' \

-H 'Content-Type: application/json'

Sample

response:
Status: 200 OK

Location: https://api.t-nova.eu/v1/orchestrator/vnfs/123

{

"id":"123",

"name":"new-vnf-one-name",

"vnf-image": "https://api.t-nova.eu/v1/nfstore/vnfs/123/image",

"vnf-manager": "",

"created_at":"2014-11-21T14:18:09Z",

"updated_at":"2014-12-03T10:38:53Z"

}

9.4.1.5. List VNFs

Returns a list of VNFs already provided. Due to the possible large number of stored

VNFs, the list returned may have to be paginated [10]. Querying, sorting and filtering

parameters can also be used, as described above.

Method

and

Endpoint:

GET

/orchestrator/vnfs

Parameters

:

none

Sample

request:
$ curl <base-url>+'/orchestrator/vnfs' \

-H 'Content-Type: application/json'

Sample

response:
Status: 200 OK

Location: https://api.t-nova.eu/v1/orchestrator/vnfs

{

 [

 { "id":"123",

 "name":"new-vnf-one-name",

 "vnf-image": "https://api.t-nova.eu/v1/nfstore/vnfs/123/image",

 "vnf-manager": "",

 "created_at":"2014-11-21T14:18:09Z",

 "updated_at":"2014-12-03T10:38:53Z"

 },

 { "id":"456",

 "name":" vnf-two",

 "vnf-image": "https://api.t-nova.eu/v1/nfstore/vnfs/456/image",

https://api.t-nova.eu/v1/nfstore/vnfs/123/image
https://api.t-nova.eu/v1/orchestrator/vnfs/123
https://api.t-nova.eu/v1/nfstore/vnfs/123/image
https://api.t-nova.eu/v1/orchestrator/vnfs
https://api.t-nova.eu/v1/nfstore/vnfs/123/image
https://api.t-nova.eu/v1/nfstore/vnfs/456/image

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

99

 "vnf-manager": "",

 "created_at":"2014-12-03T10:52:12Z",

 "updated_at":"2014-12-03T10:52:12Z"

 }

]

}

9.4.2. Orchestrator called by the Marketplace

The Marketplace calls the Orchestrator in a support of a number of requirements as

outlined in Table 9-3.

Table 9-3: Requirements for the Interface between the Marketplace and the

Orchestrator.

Number Requirement Interface

1 The Marketplace is notified about new,

updated or deleted VNFs available in

the NF Store

The real need and purpose of this

interface is still under discussion: we

might have the NFStore directly

connecting with the Marketplace or

through the Orchestrator.

2 The Marketplace is notified about (at

least part of) the VNFDs of the

available VNFs

T-Br-Or

3 The Marketplace notifies the

orchestrator about new, updated or

deleted Network Services (NSs)

Create a NS, Update a NS, Delete a

NS (T-Da-Or)

4 The Marketplace notifies the

orchestrator to instantiate and deploy

an existing NS

Instantiate a NS, Deploy a NS

instance (T-Da-Or)

5 The Marketplace notifies the

orchestrator about new configuration

parameters for an already deployed

NS

Update a NS (T-Da-Or)

6 The Marketplace inquires the

orchestrator about the state of a given

NS instance

Show a NS (T-Da-Or)

7 The Marketplace is notified about

changes in state of currently deployed

NSs

(T-Ac-Or)

8 The Marketplace is notified with

currently running NS metrics

(T-Sla-Or)

9 The Marketplace notifies the

orchestrator to stop a given NS

instance

Stop a NS instance (T-Da-Or)

While analyzing this list of requirements, a need for a generic requirement for

managing a NS instance's state, like new, running and stopped has been detected.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

100

9.4.2.1. Create a NS

The call adds a new NS to the NS Catalogue. Further work is needed to decide

between a synchronous operation and an asynchronous one that notifies its caller

later with eventual errors.

Method

and

Endpoint:

POST

/orchestrator/network-services

Parameters

:

 name (string). Required. Name of the NS to be created;

 vnfs (array). Required. The list of VNF ids composing the service

(NS creation will in the near future have many more parameters)

Sample

request:
$ curl -X POST <base-url>+'/orchestrator/network-services' \

-H 'Content-Type: application/json' \

-d \

'{

 "name": "ns-one",

 "vnfs": [123, 456]

}'

Sample

response:
Status: 201 OK

Location: https://api.t-nova.eu/v1/orchestrator/network-services/987

{

"id":"987",

"name":"ns-one",

"vnfs": [

 { "id": "123",

 "link":"https://api.t-nova.eu/v1/orchestrator/vnfs/123"

 },

 { "id": "456",

 "link":"https://api.t-nova.eu/v1/orchestrator/vnfs/456"

 }

],

"created_at":"2014-11-21T14:18:09Z",

"updated_at":"2014-11-21T14:18:09Z"

}

9.4.2.2. Update a NS

Updates an existing NS. Further work is needed to decide between a synchronous

operation and an asynchronous one that notifies its caller later with eventual errors.

T-NOVA will also work on the dichotomy between using PUT or PATCH to update a

resource: while PUT is an atomic operation, PATCH must be made atomic (i.e., no GET

operation on the same resource should be answered before the PATCH is complete).

Method

and

Endpoint:

PUT

/orchestrator/network-services/<network_service_id>

Parameters

:

 name (string). Required. Name of the NS to be updated;

 vnfs (array). Required. The list of VNF ids composing the service

(NS updating will in the near future have many more parameters)

Sample

request:
$ curl -X PUT <base-url>+'/orchestrator/network-services/987' \

-H 'Content-Type: application/json' \

-d \

https://api.t-nova.eu/v1/orchestrator/network-services/987
https://api.t-nova.eu/v1/orchestrator/vnfs/123

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

101

'{

 "name": "ns-one-new-name",

 "vnfs": [123, 456]

}'

Sample

response:
Status: 201 OK

Location: https://api.t-nova.eu/v1/orchestrator/network-services/987

{

"id":"987",

"name":"ns-one-new-name",

"vnfs": [

 { "id": "123",

 "link":"https://api.t-nova.eu/v1/orchestrator/vnfs/123"

 },

 { "id": "456",

 "link":"https://api.t-nova.eu/v1/orchestrator/vnfs/456"

 }

],

"created_at":"2014-11-21T14:18:09Z",

"updated_at":"2014-12-03T13:48:23Z"

}

9.4.2.3. Delete a NS

Deletes an existing NS.

Method

and

Endpoint:

DELETE

/orchestrator/network-services/<network_service_id>

Parameters

:

(none)

Sample

request:
$ curl -X DELETE <base-url>+'/orchestrator/network-services/987' \

-H 'Content-Type: application/json'

Sample

response:
Status: 200 OK

Location: https://api.t-nova.eu/v1/orchestrator/ network-services/987
{

"id":"987",

"name":"ns-one-new-name",

"vnfs": [

 { "id": "123",

 "link":"https://api.t-nova.eu/v1/orchestrator/vnfs/123"

 },

 { "id": "456",

 "link":"https://api.t-nova.eu/v1/orchestrator/vnfs/456"

 }

],

"created_at":"2014-11-21T14:18:09Z",

"updated_at":"2014-12-03T13:48:23Z"

}

9.4.2.4. Show a NS

Returns all data concerning a single service, including NS instances and their status.

Method

and

Endpoint:

GET

/orchestrator/network-services/<network_service_id>

Parameters

:

(none)

https://api.t-nova.eu/v1/orchestrator/network-services/987
https://api.t-nova.eu/v1/orchestrator/vnfs/123
https://api.t-nova.eu/v1/orchestrator/vnfs/123
https://api.t-nova.eu/v1/orchestrator/vnfs/123

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

102

Sample

request:
$ curl <base-url>+'/orchestrator/network-services/987' \

-H 'Content-Type: application/json'

Sample

response:
Status: 200 OK

Location: https://api.t-nova.eu/v1/orchestrator/ network-services/987

{

"id":"987",

"name":"ns-one-new-name",

"vnfs": [

 { "id": "123",

 "link":"https://api.t-nova.eu/v1/orchestrator/vnfs/123"

 },

 { "id": "456",

 "link":"https://api.t-nova.eu/v1/orchestrator/vnfs/456"

 }

],

"instances":[

 {

 "id":"456",

 "ns-id":"987",

 "status":"stopped",

 "created_at":"2014-11-24T16:42:21Z",

 "updated_at":"2014-11-24T16:42:21Z"

 }

],

"created_at":"2014-11-21T14:18:09Z",

"updated_at":"2014-12-03T13:48:23Z"

}

9.4.2.5. List NSs

Returns a list of NSs already provisioned. Due to the possible large number of stored

NSs, the list returned might have to be paginated (see Section 9.2.2, above).

Querying, sorting and filtering parameters can also be used.

Method

and

Endpoint:

GET

/orchestrator/network-services

Parameters

:

(none)

Sample

request:
$ curl <base-url>+'/orchestrator/network-services' \

-H 'Content-Type: application/json'

Sample

response:
Status: 200 OK

Location: https://api.t-nova.eu/v1/orchestrator/ network-services

{

"id":"987",

"name":"ns-one-new-name",

"vnfs": [

 { "id": "123",

 "link":"https://api.t-nova.eu/v1/orchestrator/vnfs/123"

 },

 { "id": "456",

 "link":"https://api.t-nova.eu/v1/orchestrator/vnfs/456"

 }

],

"instances":[

 {

 "id":"456",

 "ns-id":"987",

 "status":"stopped",

 "created_at":"2014-11-21T14:18:09Z",

 "updated_at":"2014-11-25T10:01:52Z"

 },

https://api.t-nova.eu/v1/orchestrator/vnfs/123
https://api.t-nova.eu/v1/orchestrator/vnfs/123
http://blog.mwaysolutions.com/2014/06/05/10-best-practices-for-better-restful-api/
http://blog.mwaysolutions.com/2014/06/05/10-best-practices-for-better-restful-api/
https://api.t-nova.eu/v1/orchestrator/vnfs/123

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

103

 {

 "id":"456",

 "ns-id":"987",

 "status":"stopped",

 "created_at":"2014-11-21T14:18:09Z",

 "updated_at":"2014-11-25T10:01:52Z"

 }

],

"created_at":"2014-11-21T14:18:09Z",

"updated_at":"2014-12-03T13:48:23Z"

}

9.4.2.6. Instantiate a NS

Requests the instantiation of an already created NS.

Method -

Endpoint:

POST

/orchestrator/ns-instances

Parameters

:

 ns-id (string). Required. Id of the NS to be instantiated;

(NS instance creation will in the near future have many more

parameters)

Sample

request:
$ curl -X POST <base-url>+'/orchestrator/ns-instances' \

-H 'Content-Type: application/json' \

-d \

'{

 "ns-id": "987"

}'

Sample

response:
Status: 201 OK

Location: https://api.t-nova.eu/v1/orchestrator/ns-instances/456

{

 "id":"456",

 "ns-id":"987",

 "status":"new",

 "created_at":"2014-11-21T14:18:09Z",

 "updated_at":"2014-11-21T14:18:09Z"

}

9.4.2.7. Deploy a NS Instance

Requests the deployment of an already instantiated NS.

Method

and

Endpoint:

PUT

/orchestrator/ns-instances/<ns_instance_id>

Parameters

:

 status (string). Required. Status the instance is required to go to.

Are there other status than deployed, undeployed and new? E.g., running

or stoped?

(The issue of which states should a NS Instance go through is still

opened)

Sample

request:
$ curl -X PUT <base-url>+'/orchestrator/ns-instances/456' \

-H 'Content-Type: application/json' \

-d \

'{

 "status": "deployed"

}'

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

104

Sample

response:
Status: 201 OK

Location: https://api.t-nova.eu/v1/orchestrator/ns-instances/456

{

 "id":"456",

 "ns-id":"987",

 "status":"deployed",

 "created_at":"2014-11-21T14:18:09Z",

 "updated_at":"2014-11-25T09:46:17Z"

}

9.4.2.8. Stop a NS Instance

Requests the stopping of an already deployed NS instance.

Method

and

Endpoint:

PUT

/orchestrator/ns-instances/<ns_instance_id>

Parameters

:

 status (string). Required. Status the instance is required to go to.

Are there other status than deployed, undeployed and new? E.g., running

or stoped?

(The issue of which states should a NS Instance go through is still

opened)

Sample

request:
$ curl -X PUT <base-url>+'/orchestrator/ns-instances/456' \

-H 'Content-Type: application/json' \

-d \

'{

 "status": "stopped"

}'

Sample

response:
Status: 201 OK

Location: https://api.t-nova.eu/v1/orchestrator/ns-instances/456

{

 "id":"456",

 "ns-id":"987",

 "status":"stopped",

 "created_at":"2014-11-21T14:18:09Z",

 "updated_at":"2014-11-25T09:46:17Z"

}

9.4.3. Orchestrator- VIM Interactions

The exact operations of this interface are still being designed. The requirements these

operations will have to support are listed in Table 9-4.

Table 9-4: Requirements for the interface between the Orchestrator and the VIM.

Number Requirement Interface

1 Request the VIM to reserve or release the entire required

infrastructure needed for a given VNF

Or-Vi

2 Request the VIM to allocate, update or release the required

infrastructure needed for a given VNF

Or-Vi

3 Add, update or delete a SW image (usually for a VNF Component) Or-Vi

4 Collect infrastructure utilization data (network, compute and storage) Or-Vi

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

105

from the VIM

5 Request infrastructure's metadata from the VIM Or-Vi

6 Request the VIM to manage the VMs allocated to a given VNF Or-Vi

7 The interfaces between the Orchestrator and the VIM SHALL be

secure, in order to avoid eavesdropping (and other security threats)

Or-Vi

9.4.4. Orchestrator called by the VNF

VNFs composing a given NS may bring their own VNF Manager. This variability

brings new challenges that still have to be understood, and a good solution be

designed to address them. We therefore just mention the mapping between the

requirements and the interfaces here as a placeholder. One of these interfaces is also

drafted.

Table 9-5: Requirements for the Interface between the VNFs and the Orchestrator.

Number Requirement Interface

1 All the interfaces between the VNFM and the VNF SHALL be secure,

in order to avoid eavesdropping (and other security threats)

Vnfm-Vnf

2 Instantiate a new VNF or terminate one that has already been

instantiated

Vnfm-Vnf

3 Retrieve the VNF instance run-time information (including

performance metrics)

Create

metric

readings

(Vnfm-

Vnf)

4 (Re-)Configure a VNF instance Vnfm-Vnf

5 Collect/request from the NFS the state/change of a given VNF (e.g.

start, stop, etc.)

Vnfm-Vnf

6 Request the appropriate scaling (in/out/up/down) metadata to the

VNF

Vnfm-Vnf

9.4.4.1. Create Metric Readings

Adds a new metric reading. VNF provided metrics are defined in the specific VNF Descriptor

and created when the VNF instance is created.

Method

and

Endpoint:

POST

/orchestrator/vnf-instances/<vnf_instance_id>/metrics/<metric_id>

Parameters

:

 value (string). Required. Value of the reading to be created.

Sample

request:
$ curl -X POST <base-url>+'/orchestrator/vnf-

instances/123456/metrics/12' \

-H 'Content-Type: application/json' \

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

106

-d \

'{

 "value": "156"

}'

Sample

response:
Status: 201 OK

Location: https://api.t-nova.eu/v1/orchestrator/vnf-

instances/123456/metrics/12

{

 "id":"987654",

 "name":"metric-name",

 "value":"156",

 "created_at":"2014-11-28T10:29:38Z",

 "updated_at":"2014-11-28T10:29:38Z"

}

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

107

10. ANNEX B

Table 10-1. Nova Compute API Calls regarding Host Aggregates

HTTP verb Action Calls

GET List of host aggregates /v2/tenant_id}/os-aggregates

Get details of a specific Host
Aggregates

/v2/{tenant_id}/os-
aggregates/{aggregate_id}

POST Create aggregate /v2/tenant_id}/os-aggregates

Add host to aggregate /v2/tenant_id}/os-
aggregates/{aggregate_id}/action

Set aggregate metadata /v2/tenant_id}/os-
aggregates/{aggregate_id}/action

Table 10-2: Nova Compute API Calls regarding virtual resources

Description Calls (GETs)

List of instances /v2/{tenant_id}/servers

Detailed list of instances /v2/{tenant_id}/servers/detail

Details for a specified instance /v2/{tenant_id}/servers/{server_id}

Usage data for a specified
instance

/v2/{tenant_id}/servers/{server_id}/diagnostics

Instance metadata /v2/{tenant_id}/servers/{server_id}/metadata

Instance Ips /v2/{tenant_id}/servers/{server_id}/ips

Instance Ips in a specified
network

/v2/{tenant_id}/servers/{server_id}/ips/{network_label}

List of Instance types /v2/{tenant_id}/flavors

Details for a specified flavor /v2/{tenant_id}/flavors/{flavor_id}

Detailed list of instance types /v2/{tenant_id}/flavors/detail

Instance type metadata /v2.1/{tenant_id}/flavors/{flavor_id}/flavor-extra_specs

List of images /v2/{tenant_id}/images

Detailed list of images /v2/{tenant_id}/images/detail

Details for a specified image /v2/{tenant_id}/images/{image_id}

Image metadata /v2/{tenant_id}/images/{image_id}/metadata

List of volumes /v1.1/{tenant_id}/os-volumes

Detailed list of volumes /v1.1/{tenant_id}/os-volumes/detail

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

108

Table 10-3: OpenDayLight APIs

Northbound API Description

Host tracker REST APIs Tracking host locations in a network, described
through a node connector which is a logical
entity standing for a switch or a port.

Statistics REST APIs Returns statistical information exposed by the
southbound protocol plugins such as
Openflow.

User Manger REST APIs Provides primitives to manage users.

Connection Manager REST APIs Manages nodes connected to the controller.

Container Manager REST APIs Creating, deleting and managing tenants in the
network.

Topology REST APIs Accessing to the topology of the network
maintained by the Topology Manager module
of OpenDaylight.

Static Routing REST APIs Managing L3 static routes in the network.

Subnets REST APIs Managing L3 subnets in a given container.

Switch Manager REST APIs Providing access to nodes, node connectors
and their properties.

Flow Programmer REST APIs Programming flows in the OpenFlow network.

Bridge Domain REST APIs Accessing to OVSDB protocol primitives which
are used to program Open vSwitch.

Neutron/Network Configuration APIs Providing integration with OpenStack matching
OpenDaylight APIs with Neutron API v2.0

Table 10-4: OpenDaylight API GET Calls

Northbound

API

GET Calls Description

Topology

/controller/nb/v2/topology/{contain
erName}

Retrieve the Topology

/controller/nb/v2/topology/{contain
erName}/ userLinks

Retrieve the user configured
links

Host Tracker

/controller/nb/v2/hosttracker/{conta
inerName}/ hosts/active

Returns a list of all Hosts

/controller/nb/v2/hosttracker/{conta
inerName}/ hosts/inactive

Returns a list of Hosts that are
statically configured and are
connected to a NodeConnector
that is down

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

109

/controller/nb/v2/hosttracker/{conta
inerName}/
address/{networkAddress}

GET a host that matches the IP
Address

Flow
Programmer

/controller/nb/v2/flowprogrammer/
{containerName}

Returns a list of Flows
configured on the given
container.

/controller/nb/v2/flowprogrammer/
{containerName}/node/{nodeType}/{
nodeId}

Returns a list of Flows
configured on a Node in a given
container.

Static Routing

/controller/nb/v2/staticroute/{contai
nerName}/ route/{route}

Get the static route on the
container

/controller/nb/v2/staticroute/{contai
nerName}/ routes

Get a list of static routes on the
container

Statistics

/controller/nb/v2/statistics/{containe
rName}/flow

Get a list of Flow Statistics from
all the Nodes.

/controller/nb/v2/statistics/{containe
rName}/flow/node/{nodeType}/{nod
eId}

Get a Flow statistic of a certain
Node

/controller/nb/v2/statistics/{containe
rName}/port

Get a list of the statistics of all
the NodeConnectors on all the
Nodes

/controller/nb/v2/statistics/{containe
rName}/port/node/{nodeType}/{nod
eId}

Get a list of the statistics of all
the NodeConnectors on a given
Node

/controller/nb/v2/statistics/{containe
rName}/table

Get a list of all the Table
statistics on all the Nodes

/controller/nb/v2/statistics/{containe
rName}/table/node/{nodeType}/{nod
eId}

Get a list of all the Table
statistics on a specific Node

Subnets

/controller/nb/v2/subnetservice/{con
tainerName}/subnet/{subnetName}

List the configuration of a
subnet on a given container

/controller/nb/v2/subnetservice/{con
tainerName}/subnets

List all the subnets of the given
container

Switch

/controller/nb/v2/switchmanager/{c
ontainerName}/node/{nodeType}/{n
odeId}

Get a list of all the
NodeConnectors and their
properties in a given Node

/controller/nb/v2/switchmanager/{c
ontainerName}/nodes

Retrieve a list of all the nodes
and their properties in the
network

Container

/controller/nb/v2/containermanager
/container/{container}/flowspec/{flo
wspec}

Get flowspec within a given
container

/controller/nb/v2/containermanager Get all the flowspec on the

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

110

/container/{container}/flowspecs container

/controller/nb/v2/containermanager
/containers

Get all the containers configured
in the system

Neutron
Firewall

/controller/nb/v2/neutron/fw/firewa
lls

Get a list of all Firewalls

/controller/nb/v2/neutron/fw/firewa
lls/{firewallUUID}

Get a specific Firewall

/controller/nb/v2/neutron/fw/firewa
lls_policies

Get a list of all Firewall Policies

/controller/nb/v2/neutron/fw/firewa
lls_policies/{firewallPolicyUUID}

Returns a specific Firewall Policy

/controller/nb/v2/neutron/fw/firewa
lls_rules

Returns a list of all Firewall Rules

/controller/nb/v2/neutron/fw/firewa
lls_rules/{firewallRuleUUID}

Returns a specific Firewall Rule

Neutron
Floating IPs

/controller/nb/v2/neutron/floatingip
s

Get a list of all floating ips

/controller/nb/v2/neutron/floatingip
s/{floatingipUUID}

Get a specific floating IP

Neutron Load
Balancer

/controller/nb/v2/neutron/healthmo
nitors

Returns a list of all
LoadBalancerHealthMonitor

/controller/nb/v2/neutron/healthmo
nitors/{loadBalancerHealthMonitorID
}

Returns a specific
LoadBalancerHealthMonitor

/controller/nb/v2/neutron/listeners Returns a list of all
LoadBalancerListener

/controller/nb/v2/neutron/listeners/{
loadBalancerListenerID}

Returns a specific
LoadBalancerListener

/controller/nb/v2/neutron/loadbalan
cers

Returns a list of all LoadBlancer

/controller/nb/v2/neutron/loadbalan
cers/{loadBalancerID}

Returns a specific LoadBalancer

/controller/nb/v2/neutron/pools/{loa
dBalancerPoolUUID}/members

Returns a list of all
LoadBalancerPoolMembers in
the specified Pool

/controller/nb/v2/neutron/pools/{loa
dBalancerPoolUUID}/members/{load
BalancerPoolMemberUUID}

Returns a specific
LoadBalancerPoolMember

/controller/nb/v2/neutron/pools Returns a list of all
LoadBalancerPool

/controller/nb/v2/neutron/pools/{loa
dBalancerPoolID}

Return a specific
LoadBalancerPool

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

111

Neutron
Networks

/controller/nb/v2/neutron/networks Returns a list of all Networks

/controller/nb/v2/neutron/networks
/{netUUID}

Returns a specific Network

Neutron Ports

/controller/nb/v2/neutron/ports Returns a list of all Ports

/controller/nb/v2/neutron/ports/{po
rtUUID}

Returns a specific Port

Neutron
Routers

/controller/nb/v2/neutron/routers Returns a list of all Routers

/controller/nb/v2/neutron/routers/{r
outerUUID}

Returns a specific Router

Neutron
Security
Groups

/controller/nb/v2/neutron/security-
groups

Returns a list of all Security
Groups

/controller/nb/v2/neutron/security-
groups/ {securityGroupUUID}

Returns a specific Security
Group

Neutron
Security rules

/controller/nb/v2/neutron/security-
group-rules

Returns a list of all Security
Rules

/controller/nb/v2/neutron/security-
group-rules/ {securityRuleUUID}

Returns a specific Security Rule

Neutron
Subnets

/controller/nb/v2/neutron/subnets Returns a list of all Subnets

/controller/nb/v2/neutron/subnets/{
subnetUUID}

Returns a specific Subnet

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

112

11. ANNEX C: ARCHITECTURE-DATA MODEL RELATION

Figure 11-1: Architecture-Data Model relation

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

113

12. ANNEX D: EPA JSON OBJECT

EPA JSON Object and available information fields in current implementation

{ "CPU" : { "Cache" : "25600 KB",

 "Cores" : 40,

 "Flags" : ["fpu",

 "vme", "de", "pse", "tsc", "msr", "pae", "mce", "cx8", "apic", "sep",

"mtrr", "pge", "mca", "cmov", "pat", "pse36", "clflush", "dts", "acpi", "mmx",

"fxsr", "sse", "sse2", "ss", "ht", "tm", "pbe", "syscall", "nx", "pdpe1gb",

"rdtscp", "lm", "constant_tsc", "arch_perfmon", "pebs", "bts", "rep_good", "nopl",

"xtopology", "nonstop_tsc", "aperfmperf", "eagerfpu", "pni", "pclmulqdq", "dtes64",

"monitor", "ds_cpl", "vmx", "smx", "est", "tm2", "ssse3", "cx16", "xtpr", "pdcm",

"pcid", "dca", "sse4_1", "sse4_2", "x2apic", "popcnt", "tsc_deadline_timer", "aes",

"xsave", "avx", "f16c", "rdrand", "lahf_lm", "ida", "arat", "epb", "xsaveopt",

"pln", "pts", "dtherm", "tpr_shadow","vnmi", "flexpriority", "ept", "vpid",

"fsgsbase", "smep", "erms"],

 "Freq" : "1254.531",

 "Model" : "Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz",

 "VendorID" : "GenuineIntel"

 },

 "Disk" : { "Blocks" : { "map" : { "hw_sector_size" : "", "scheduler" : "" }, "sda" :

{ "hw_sector_size" : "512", "scheduler" : "noop deadline [cfq] "}},

 "Partitions" : {

"/dev/mapper/fedora-home" : { "Available" : "374G", "Size" : "394G", "Used" : "75M",

"Used%" : "1%"},

 "/dev/mapper/fedora-root" : { "Available" : "374G", "Size" :

"394G", "Used" : "75M", "Used%" : "1%"},

 "/dev/sda1" : { "Available" : "374G", "Size" : "394G", "Used" :

"75M", "Used%" : "1%" }

 }

 },

 "Issue" : "Fedora release 20 (Heisenbug)\n",

 "Kernel" : "Linux 3.16.6-200.fc20.x86_64",

 "LSmod" : { "auth_rpcgss" : { "Size" : "58761", "Used by" : ["1", ["nfsd"]] },

 "binfmt_misc" : { "Size" : "17431", "Used by" : ["1", [""]] },

 "bridge" : { "Size" : "116006", "Used by" : ["0", [""]] },

 "coretemp" : { "Size" : "13441", "Used by" : ["0", [""]] },

 "crc32_pclmul" : { "Size" : "13133", "Used by" : ["0", [""]] },

 "crc32c_intel" : { "Size" : "22094", "Used by" : ["0", [""]] },

 "crc_itu_t" : { "Size" : "12613", "Used by" : ["1", ["firewire_core"

]] },

 "crct10dif_pclmul" : { "Size" : "14307", "Used by" : ["0", [""]] },

 "dca" : { "Size" : "14601", "Used by" : ["2", ["igb", "ioatdma"]]

},

 "drm" : { "Size" : "291361", "Used by" : ["6", ["ttm",

"drm_kms_helper", "nouveau"]] },

 "drm_kms_helper" : { "Size" : "58041", "Used by" : ["1", ["nouveau"]

] },

 "ebtable_nat" : { "Size" : "12807", "Used by" : ["0", [""]] },

 "ebtables" : { "Size" : "30758", "Used by" : ["1", ["ebtable_nat"]

] },

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

114

 "edac_core" : { "Size" : "56654", "Used by" : ["1", ["sb_edac"]]

},

 "firewire_core" : { "Size" : "62559", "Used by" : ["1", [

"firewire_ohci"]] },

 "firewire_ohci" : { "Size" : "40502", "Used by" : ["0", [""]] },

 "ghash_clmulni_intel" : { "Size" : "13230", "Used by" : ["0", [""]

] },

 "i2c_algo_bit" : { "Size" : "13257", "Used by" : ["2", ["igb",

"nouveau"]] },

 "i2c_core" : { "Size" : "55486", "Used by" : ["6", ["drm", "igb",

"i2c_i801", "drm_kms_helper", "i2c_algo_bit","nouveau"]]},

 "i2c_i801" : { "Size" : "18146", "Used by" : ["0", [""]] },

 "iTCO_vendor_support" : { "Size" : "13419", "Used by" : ["1", [

"iTCO_wdt"]] },

 "iTCO_wdt" : { "Size" : "13480", "Used by" : ["0", [""]] },

 "igb" : { "Size" : "192008", "Used by" : ["0", [""]] },

 "ioatdma" : { "Size" : "63397", "Used by" : ["0", [""]] },

 "ip6_tables" : { "Size" : "26809", "Used by" : ["1", [

"ip6table_filter"]]},

 "ip6table_filter" : { "Size" : "12815", "Used by" : ["0", [""]]

},

 "ipmi_msghandler" : { "Size" : "43757", "Used by" : ["1", ["ipmi_si"

]] },

 "ipmi_si" : { "Size" : "53386", "Used by" : ["0", [""]] },

 "ipt_MASQUERADE" : { "Size" : "12880", "Used by" : ["3", [""]] },

 "iptable_mangle" : { "Size" : "12695", "Used by" : ["1", [""]] },

 "iptable_nat" : { "Size" : "12970", "Used by" : ["1", [""]] },

 "isci" : { "Size" : "137588", "Used by" : ["2", [""]] },

 "joydev" : { "Size" : "17344", "Used by" : ["0", [""]] },

 "kvm" : { "Size" : "452677", "Used by" : ["1", ["kvm_intel"]] },

 "kvm_intel" : { "Size" : "147547", "Used by" : ["0", [""]] },

 "libsas" : { "Size" : "73498", "Used by" : ["1", ["isci"]] },

 "llc" : { "Size" : "13941", "Used by" : ["2", ["stp", "bridge"]]

},

 "lockd" : { "Size" : "93436", "Used by" : ["1", ["nfsd"]] },

 "lpc_ich" : { "Size" : "21093", "Used by" : ["0", [""]] },

 "mei" : { "Size" : "86597", "Used by" : ["1", ["mei_me"]] },

 "mei_me" : { "Size" : "19568", "Used by" : ["0", [""]] },

 "mfd_core" : { "Size" : "13182", "Used by" : ["1", ["lpc_ich"]] },

 "mic_host" : { "Size" : "53814", "Used by" : ["0", [""]] },

 "microcode" : { "Size" : "44710", "Used by" : ["0", [""]] },

 "mii" : { "Size" : "13527", "Used by" : ["1", ["r8169"]] },

 "mxm_wmi" : { "Size" : "12865", "Used by" : ["1", ["nouveau"]] },

"nf_conntrack" : { "Size" : "99420", "Used by" : ["6", ["ipt_MASQUERADE","nf_nat",

"nf_nat_ipv4", "xt_conntrack", "iptable_nat", "nf_conntrack_ipv4"]] },

 "nf_conntrack_ipv4" : { "Size" : "14656", "Used by" : ["2", [""]]

},

 "nf_defrag_ipv4" : { "Size" : "12702", "Used by" : ["1", [

"nf_conntrack_ipv4"]] },

 "nf_nat" : { "Size" : "25178", "Used by" : ["3", ["ipt_MASQUERADE",

"nf_nat_ipv4", "iptable_nat"]] },

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

115

 "nf_nat_ipv4" : { "Size" : "13199", "Used by" : ["1", ["iptable_nat"

]] },

 "nfs_acl" : { "Size" : "12741", "Used by" : ["1", ["nfsd"]] },

 "nfsd" : { "Size" : "283833", "Used by" : ["1", [""]] },

 "nouveau" : { "Size" : "1222531", "Used by" : ["3", [""]] },

 "pps_core" : { "Size" : "19130", "Used by" : ["1", ["ptp"]] },

 "ptp" : { "Size" : "19140", "Used by" : ["1", ["igb"]] },

 "r8169" : { "Size" : "71694", "Used by" : ["0", [""]] },

 "sb_edac" : { "Size" : "22272", "Used by" : ["0", [""]] },

 "scsi_transport_sas" : { "Size" : "39402", "Used by" : ["2", [

"isci", "libsas"]] },

 "shpchp" : { "Size" : "37047", "Used by" : ["0", [""]] },

"snd" : { "Size" : "75905", "Used by" : ["24", ["snd_hda_codec_realtek",

"snd_hwdep", "snd_timer", "snd_hda_codec_hdmi", "snd_pcm", "snd_seq",

"snd_hda_codec_generic", "snd_hda_codec", "snd_hda_intel", "snd_seq_device"]] },

"snd_hda_codec" : { "Size" : "131298", "Used by" : ["5", ["snd_hda_codec_realtek",

"snd_hda_codec_hdmi", "snd_hda_codec_generic", "snd_hda_intel",

"snd_hda_controller"]] },

 "snd_hda_codec_generic" : { "Size" : "67662", "Used by" : ["1", [

"snd_hda_codec_realtek"]] },

 "snd_hda_codec_hdmi" : { "Size" : "47489", "Used by" : ["1", [""]]

},

 "snd_hda_codec_realtek" : { "Size" : "72791", "Used by" : ["1", [""

]] },

 "snd_hda_controller" : { "Size" : "30139", "Used by" : ["1", [

"snd_hda_intel"]] },

 "snd_hda_intel" : { "Size" : "30379", "Used by" : ["7", [""]] },

 "snd_hwdep" : { "Size" : "17650", "Used by" : ["1", [

"snd_hda_codec"]] },

 "snd_pcm" : { "Size" : "104333", "Used by" : ["4", ["snd_hda_codec_hdmi",

"snd_hda_codec", "snd_hda_intel", "snd_hda_controller"]] },

 "snd_seq" : { "Size" : "62266", "Used by" : ["0", [""]]},

 "snd_seq_device" : { "Size" : "14136", "Used by" : ["1", ["snd_seq"

]] },

 "snd_timer" : { "Size" : "28778", "Used by" : ["2", ["snd_pcm",

"snd_seq"]] },

 "soundcore" : { "Size" : "14491", "Used by" : ["2", ["snd",

"snd_hda_codec"]] },

 "stp" : { "Size" : "12868", "Used by" : ["1", ["bridge"]] },

 "sunrpc" : { "Size" : "279214", "Used by" : ["5", ["nfsd",

"auth_rpcgss", "lockd", "nfs_acl"]] },

 "tpm" : { "Size" : "35153", "Used by" : ["1", ["tpm_tis"]] },

 "tpm_tis" : { "Size" : "18581", "Used by" : ["0", [""]] },

 "ttm" : { "Size" : "80807", "Used by" : ["1", ["nouveau"]] },

 "video" : { "Size" : "19777", "Used by" : ["1", ["nouveau"]] },

 "vringh" : { "Size" : "20245", "Used by" : ["1", ["mic_host"]] },

 "wmi" : { "Size" : "18820", "Used by" : ["2", ["mxm_wmi", "nouveau"]

] },

 "x86_pkg_temp_thermal" : { "Size" : "14205", "Used by" : ["0", [""]

] },

 "xt_CHECKSUM" : { "Size" : "12549", "Used by" : ["1", [""]] },

 "xt_conntrack" : { "Size" : "12760", "Used by" : ["1", [""]] } },

 "MEM" : { "Buffers" : "45056", "Cached" : "774948", "Free" : "31315304", "Shared" :

"9996", "Total" : "32842036", "Used" : "1526732" },

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

116

 "NET" : {

"lo:" : { "Encap" : null, "IPv4" : null, "IPv6" : null, "MAC" : null, "Mask" :

null },

 "p2p1:" : { "Encap" : null, "IPv4" : null, "IPv6" : null, "MAC" : null,

"Mask" : null },

 "virbr0:" : { "Encap" : null, "IPv4" : null, "IPv6" : null, "MAC" : null,

"Mask" : null }

 },

 "PCI" : { "Audio device" : "NVIDIA Corporation GK107 HDMI Audio Controller (rev

a1)",

 "Co-processor" : "Intel Corporation Xeon Phi coprocessor SE10/7120 series (rev

20)",

 "Communication controller" : "Intel Corporation C600/X79 series chipset MEI

Controller #2 (rev 05)",

 "Ethernet controller" : "Intel Corporation I350 Gigabit Network Connection (rev

01)",

 "FireWire (IEEE 1394)" : "Texas Instruments XIO2213A/B/XIO2221 IEEE-1394b OHCI

Controller [Cheetah Express] (rev 01)",

 "Host bridge" : "Intel Corporation Xeon E7 v2/Xeon E5 v2/Core i7 DMI2 (rev 04)",

 "ISA bridge" : "Intel Corporation C600/X79 series chipset LPC Controller (rev

06)",

 "PCI bridge" : "Intel Corporation Xeon E7 v2/Xeon E5 v2/Core i7 PCI Express Root

Port 3a (rev 04)",

 "PIC" : "Intel Corporation Xeon E7 v2/Xeon E5 v2/Core i7 IOAPIC (rev 04)",

 "Performance counters" : "Intel Corporation Xeon E7 v2/Xeon E5 v2/Core i7 QPI

Ring Performance Ring Monitoring (rev 04)",

 "SATA controller" : "Intel Corporation C600/X79 series chipset 6-Port SATA AHCI

Controller (rev 06)",

 "SMBus" : "Intel Corporation C600/X79 series chipset SMBus Controller 0 (rev

06)",

 "Serial Attached SCSI controller" : "Intel Corporation C602 chipset 4-Port SATA

Storage Control Unit (rev 06)",

 "System peripheral" : "Intel Corporation Xeon E7 v2/Xeon E5 v2/Core i7 Broadcast

Registers (rev 04)",

 "USB controller" : "Texas Instruments TUSB73x0 SuperSpeed USB 3.0 xHCI Host

Controller (rev 02)",

 "VGA compatible controller" : "NVIDIA Corporation GK107 [GeForce GTX 650] (rev

a1)"

 }

}

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

117

Table 12-1: Infrastructure information returned for HOST and Hypervisor API Call

HOST API GET Hypervisor API GET Call

{ "host" : [

 { "resource" : { "cpu" : 1, "disk_gb" : 1028, "host" :
"5ca60c6792a1442f9471ff575443f94d", "memory_mb" : 8192,
"project" : "(total)" },

 { "resource" : { "cpu" : 0, "disk_gb" : 0, "host" :
"5ca60c6792a1442f9471ff575443f94d", "memory_mb" : 512,
"project" : "(used_now)" } },

 { "resource" : { "cpu" : 0, "disk_gb" : 0, "host" :
"5ca60c6792a1442f9471ff575443f94d", "memory_mb" : 0,
"project" : "(used_max)" } }

] }

{ "hypervisors" : [{ "cpu_info" : "?",

 "current_workload" : 0,

 "disk_available_least" : null,

 "free_disk_gb" : 1028,

 "free_ram_mb" : 7680,

 "hypervisor_hostname" : "fake-mini",

 "hypervisor_type" : "fake",

 "hypervisor_version" : 1,

 "id" : 1,

 "local_gb" : 1028,

 "local_gb_used" : 0,

 "memory_mb" : 8192,

 "memory_mb_used" : 512,

 "running_vms" : 0,

 "service" : { "host" : "1e0d7892083548cfb347e782d3b20342",

 "id" : 2

 },

 "vcpus" : 1,

 "vcpus_used" : 0

 }] }

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

118

13. ANNEX E: ORCHESTRATOR’S MONITORING

COMPONENTS

This appendix contains the figure describing the monitoring components of the

orchestrator and how they will interact with the VIM components.

The monitoring data at the orchestrator is received at two different levels: the VNF

and the NS levels. For the VNF level, the corresponding VNF Monitoring modules will

receive the data from the VNF monitoring agents deployed at the VIM (WP4). All the

data received is stored in the VNF repository, and part of the data is forwarded to the

service monitoring component. This component, responsible for the service-level

monitoring, also receives data from the VIM itself. The component processes the data

(if required) in order to build service-level metrics, and send them to the

corresponding NS repository.

The monitoring within T-NOVA follows the push model, so all the data is posted from

the low-level component towards the upper-level component. The low-level agents

(i.e. the VNF Monitoring agents in the VIM) are not allowed to directly access the

repositories in the orchestrator, in order to prevent data inconsistencies, bad usages,

or garbage-distribution.

Figure 13-1: Monitoring components within the T-NOVA orchestrator.

T-NOVA | Deliverable D3.01 Inter. Report on Orchestrator Platform Implementation

© T-NOVA Consortium

119

