
T-NOVA | Deliverable D3.1 Interfaces

© T-NOVA Consortium | P a g e

1

Deliverable D3.1

Orchestrator Interfaces

Editor José Bonnet (PTIn)

Contributors J. Carapinha, P. Neves, M. Dias, B. Parreira (PTIn), M. McGrath,
G. Petralia, V. Riccobene (INTEL), P. Paglierani (ITALTEL), J.
Ferrer Riera, J. Batallé (i2CAT), M. Di Girolamo, P. Magli, L.
Galluppi, G. Coffano (HP), A. Ramos, J. Melián (ATOS), P.
Harsh (ZHAW)

Version 1.0

Date September 30th, 2015

Distribution PUBLIC (PU)

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 2| P a g e

Executive Summary

The Orchestrator is the core sub-system of the T-NOVA Architecture. This deliverable
describe its northbound, southbound and internal interfaces.

A REST-based API was adopted for all the Orchestrator’s interfaces, both for external
and internal (with JSON over HTTP), where information organised in resources,
independently of its internal representation can be exposed, created, updated or
deleted. This option for the interfaces naturally leads to the choice of separating the
functionality of the Orchestrator into microservices, an approach that is becoming the
de facto standard way of organising application, bringing advantages such as
(programming) language-, platform- and operating system-agnosticism, as well as
independent deployments, updates, replaces and scaling This level flexibility also
results in operational challenges, which will be addressed in other deliverables
ofWP3.

The fact that there is the possibility of some VNFs to bring their own specific
manager raises some issues (e.g., would a Service Provider allow provisioning and
monitoring of VNF instances managed externally in its own infrastructure?) that aren’t
yet clear enough to support the full development of such a feature. However, the
microservice based design that has been adopted for the Orchestrator, together with
RESTful APIs for the microservices (even those not directly exposed to external
usage/interactions), should provide sufficient flexibility to support rapid
implementation of support for new services with manageable impact existing
modules.

We have opted to expose some of the initially considered internal interfaces for two
reasons: first, as outlined the possibility of having to accommodate specific VNF
Managers (i.e., turning an initial internal interface between the Orchestrator and the
VNF Manager into an external interface); second, the need to provide those services
(e.g., authentication and authorisation) to other modules that though being internal,
were developed with a totally different technological stack and would benefit from
sharing the service. These interfaces have been designed following the same rules as
the external ones.

The key takeaways of this deliverable are:

x The T-NOVA Orchestrator is built with RESTful APIs, with JSON over HTTP, a
state of the art approach;

x These interfaces support ETSI’s notion of specific VNF Managers, but the
implementation still has to mature due to the details like security,
performance, etc., of such specific component that still have to be analysed;

x This deliverable also describe the VNF Manager interfaces, weather this
component be generic (when those interfaces would be internal) or specific
(when those interfaces would be internal), so that the exact implementation
can be designed later, in a more knowledgeable state;

x As the Orchestrator architecture was designed following a microservices
approach, the development has an extra degree of choice in terms of
programming language, platform and Operating System to use in each one of

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 3| P a g e

the microservices, as well as completely decoupling the form of deploying,
scaling, etc. of each microservice.

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 4| P a g e

Table of Contents

1. INTRODUCTION ... 8

1.1. TOP-DOWN VS. BOTTOM-UP INTERFACES ... 9
1.2. SPECIFIC VNF MANAGERS... 9
1.3. READING THIS REPORT ... 10

2. ORCHESTRATOR INTERACTIONS ... 11

2.1. INTERACTIONS WITH THE NF STORE .. 11
2.1.1. Virtual Network Functions ... 11
2.1.2. Virtual Network Functions Images ... 11

2.2. INTERACTIONS WITH THE MARKETPLACE ... 12
2.2.1. Network Services ... 12
2.2.2. Network Service Instantiation .. 12
2.2.3. Network Service Instance Change of State .. 13
2.2.4. Network Service Instance Change of Configuration Parameters 14
2.2.5. Network Service Instance Request for Metrics .. 14

2.3. INTERACTIONS WITH THE VIM .. 14
2.3.1. Network Service Multitenancy ... 14
2.3.2. Resource Allocation ... 15
2.3.3. Infrastructure Repository .. 20
2.3.4. Monitoring Parameters ... 21

2.4. INTERACTIONS WITH THE WICM .. 24
2.5. INTERACTIONS WITH THE VNFS .. 25

2.5.1. The mAPI ... 25
2.5.2. Configuration Procedures (VNFM point of view) ... 26
2.5.3. External Interface Specification .. 27

2.6. INTERACTIONS WITH THE VNFM .. 27
2.7. INTERACTIONS WITH OTHER MODULES/MICROSERVICES ... 28

2.7.1. Authentication and Authorisation: Gatekeeper.. 29
2.7.2. Management UI .. 33
2.7.3. Internal Monitoring and Logging .. 34

3. ORCHESTRATOR INTERFACES .. 35

3.1. WHY A MICROSERVICES-BASED ARCHITECTURE? ... 35
3.2. EXTERNAL ORCHESTRATOR INTERFACES .. 35

3.2.1. Interfaces with the NF Store .. 36
3.2.2. Interfaces with the Marketplace .. 37
3.2.3. Interfaces with the WICM .. 38
3.2.4. Interfaces with the VNFM .. 39

3.3. EXTERNAL VNFM INTERFACES .. 42
3.3.1. With the VIM .. 42
3.3.2. With the VNFs .. 44

3.4. EXTENSIBILITY .. 45

4. CONCLUSIONS .. 47

5. ACRONYMS ... 48

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 5| P a g e

6. REFERENCES .. 50

ANNEX A THE ORCHESTRATOR ARCHITECTURE .. 53

ANNEX B THE ORCHESTRATOR API ... 54

B.1 NS MANAGER .. 54
B.1.1 Return codes .. 54

B.2 VNF MANAGER ... 54
B.2.1 Return codes .. 55

B.3 INTERFACE BETWEEN THE VNFM AND THE VIM ... 55
B.3.1 Infrastructure allocation .. 55
B.3.2 Return codes .. 59

B.4 INTERFACES COMPILATION, INSTALLATION AND DEPLOYMENT GUIDE 59
B.4.1 Gatekeeper ... 60
B.4.2 Management UI ... 60

ANNEX C VNF DESCRIPTOR .. 61

ANNEX D NS DESCRIPTOR .. 68

ANNEX E OPENSTACK’S HEAT TEMPLATE .. 72

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 6| P a g e

Figures

Figure 1-1: The T-NOVA Orchestrator Architecture, simplified. ... 8
Figure 2-1: OpenStack modules. ... 16
Figure 2-2: A HEAT template structure. .. 16
Figure 2-3: Example of a HEAT file. .. 17
Figure 2-4: Sections in a HOT template. .. 18
Figure 2-5: The Infrastructure Repository middleware layer design. 21
Figure 2-6: Extract of an NSD, emphasizing the SLA parameters. For full NSD example,
please see Annex D. ... 22
Figure 2-7: Sequence diagram of monitoring parameter subscription. 22
Figure 2-8: Sequence diagram of the reading of a monitoring parameter. 23
Figure 2-9: Sequence diagram illustrating the interactions between the T-NOVA
Orchestrator, the VIM and the WICM. .. 25
Figure 2-10: The VNFM and its VNFs. .. 25
Figure 2-11- T-NOVA partial architecture with only the VNFM, mAPI and VNFs. 26
Figure 2-12: Example of an interaction between the VNFM and the mAPI for updating
a VNF configuration. .. 27
Figure 2-13: interactions of the VNFM within the orchestrator. ... 28
Figure 2-14: Internal modules of the Orchestrator. ... 29
Figure 2-15: Creating a new user. ... 32
Figure 2-16: Registering a new service. .. 32
Figure 2-17: Sequence diagram of a user request. .. 33
Figure 3-1: The interactions between the Orchestrator and the NF Store/Marketplace.
 ... 36
Figure A-1: The Orchestrator Architecture. ... 53

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 7| P a g e

Tables

Table 2-1: Gatekeeper administrator’s interface... 30
Table 2-2: Gatekeeper's users interface. .. 31
Table 2-3: Gatekeeper's service interface. ... 31
Table 3-1: VNFs interface with the NF Store. ... 36
Table 3-2: NSs interface with the Marketplace. .. 37
Table 3-3: NS Instance interface with the Marketplace. .. 37
Table 3-4: Monitoring data interface with the Marketplace. ... 38
Table 3-5: Notification of change of state of a NS instance with the Marketplace....... 38
Table 3-6: Interface with the WICM. .. 39
Table 3-7: Interface with the VNF Manager. .. 39
Table 3-8: Interface for managing VNFs with the VNFM. ... 39
Table 3-9: Interface for managing VNF instances with the VNFM. 40
Table 3-10: Interface with the VNFM for scaling and migrating. ... 41
Table 3-11: Interface with the NS Manager for accepting monitoring parameters
subscriptions. ... 42
Table 3-12: Interface with the VIM for multitenancy infrastructure. 42
Table 3-12: Interface with the VIM for allocating infrastructure... 43
Table 3-13: Interface (partial) with the VIM for the Infrastructure Repository. 43
Table 3-14: Interface with the VIM's Monitoring Framework for subscribing
monitoring parameters. ... 44
Table 3-15: Interface with the NS Manager for accepting monitoring parameters
readings. ... 44
Table 3-16: Interface with the VNFs (through the mAPI). ... 45
Table B-1: The NS Manager's API ... 54
Table B-2: The NS Manager's API return codes. ... 54
Table B-3: The VNF Manager's API .. 54
Table B-4: The VNF Manager's API return codes.. 55
Table B-5: The VNF Manager's AP with the VIMI ... 55
Table B-6: The VNF Manager's API with the VIM return codes ... 59

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 8| P a g e

1. INTRODUCTION

The primary goal of Task 3.1, Orchestrator Interfaces, is to implement the external
interfaces of the T-NOVA Orchestrator, specifically its  Northbound interfaces with the
Network Functions (NF) Store, the Marketplace and the Operational Support Systems
(OSS), and its Southbound interfaces with the Virtual Infrastructure Manager (VIM)
and the deployed Virtual Network Function (VNFs). These interfaces were first drafted
in [1].

As the work in the task has progressed, and to support some of the Use Cases, it was
necessary to have a third sub-system interacting with the Orchestrator through its
Southbound interface, named Wide Area Network (WAN) Infrastructure Connection
Management (WICM).

It was also concluded that interfacing with a generic OSS would be of a little value,
and covering the available commercial offerings or choosing a sub-set of them would
result a level of effort that would have more valuable covering other aspects of the
Orchestrator that were not yet clear. Nevertheless, we believe that the architecture
design and its interfaces will make it easy to interface with a specific OSS, once that
OSS and the interfacing technologies are chosen.

Figure 1-1 represents a simplified view of some of the T-NOVA Orchestrator modules
and the other sub-systems having interfaces with it (see Annex A for more details).

Figure 1-1: The T-NOVA Orchestrator Architecture, simplified.

Figure 1-1 shows the main T-NOVA Architecture sub-systems that interface with the
Orchestrator:

x The NF Store, where Function Providers upload their VNFs;

NF�Store�

T-NOVA�Orchestrator�

Marketplace�

VIM�

VNF�Manager�VNF�Manager�

mAPI�

VNF�Manager�

NS�Manager�

G�a�t�e�k�
e�e�p�e�r�

WICM� VNFs�

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 9| P a g e

x The Marketplace, where Service Providers compose Network Services (NSs)
by using available VNFs and Customers purchase those services;

x The VIM, where the infrastructure supporting the VNFs execution for a given
purchased NSs can be created;

x The WICM, a facade to the real network, where the connection between the
requested service and the remaining network connecting the PoPs can be
requested;

x And the VNFs themselves for supporting the T-NOVA VNF lifecycle.

Within the Orchestrator itself three modules are represented:

x The VNF Manager(s), representing VNFs that have their own (specific) VNF
Manager (see [2]);

x The Gatekeeper, an authentication and authorisation module for all the
modules of the Orchestrator;

x The middleware API (mAPI), which abstracts the interface(s) for different
VNFs;

There are other internal modules, but since their interactions are kept fully internal,
their interactions and interfaces are not detailed here.

This document describes the interactions and interfaces between all these systems.
These interfaces can be grouped into two categories, as described in the next sub-
section. Since the VNFM may be specific to a VNF, some options had to be taken, as
outlined next.

1.1. Top-down vs. Bottom-up interfaces

The interfaces documented in this deliverable may be classified in two broad groups,
in terms of amount of information conveyed and number of requests made:

x Top-down flows will typically have lengthier messages (VNFs, NSDs, HEAT
Templates), but occur less frequently;

x Bottom-up flows will typically contain short messages (responses to the top-
down requests mentioned above and monitoring data values), but occur with
a (very) high frequency.

These two very distinct characteristics might impose an optimisation step later in the
development process, namely for the bottom-up flows, due to the higher latency
HTTP has (see [3]), when compared to other transport protocols (e.g., User Datagram
Protocol, UDP, see [4]) used by the industry when low latency is a requirement (e.g.,
in Monitoring or Logging systems). As work progresses and we measure the
performance of the different microservices, we may change the implementation of
bottom-up interfaces that are less performing.

1.2. Specific VNF Managers

The design of the Orchestrator addresses the challenges of accommodating a VNF
with its own (specific) VNF Manager (see [2]) when registering in the NF Store. In this
case, there would be a ‘generic’ VNF Manager, which is being designed, and a specific
VNF Manager, brought by some of the on-boarded VNFs. Although the exact

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 10| P a g e

consequences of such a possibility are not yet fully understood, there are already
some issues that made us delay such design in detail, such as:

x Catalogue integrity: it is clear that the VNF Catalogue integrity must be kept,
in order not to negatively affect the other subsystems (namely the
Marketplace, where the Service Provider can build its NSs, from the available
VNFs). So, even when there is one or more specific VNF Managers, it is
necessary to have to be a single catalogue from the point of view of the other
subsystems that have to be designed, even if and when strategies such as
catalogue federation are adopted;

x Security: it is not at all clear how a Service Provider may allow access to a
third party (the FP), allocating and managing resources in its infrastructure,
monitoring them, etc., without negatively affecting the SPs’ overall expected
Quality-of-Service. Even if we restrict every specific VNF Manager to manage
VNF instances resulting from the VNF it came with, this issue may still stand;

x Performance: if the external VNF Manager is going to be located away from
the VNF instances it is responsible for managing, significant infrastructure
may need to be allocated, in order to support the performance needed for the
VNF Manager to adequately manage these instances.

The architecture design addresses these issues by maintaining a high degree of
flexibility: the microservices (see [5, 6] and Sub-section 3.1) based architecture will
support easy replacement of individual microservices (e.g., the VNF Manager),
configuring it adequately (e.g., making the VNF Catalogue the generic one within the
specific VNF Manager), through an adequate level of security (e.g., by using the
Gatekeeper module to provide external VNF Managers with the adequate
authentication and authorisation credentials).

1.3. Reading this Report

This report documents this work in the following chapters:

x Section 2, describes the Orchestrator Interactions, where the interactions
between the different sub-systems with the Orchestrator is described, on top
of which the interfaces with those systems were defined;

x Section 3, describes the Orchestrator Interfaces, where the interfaces are
defined (in order to make this chapter as easy to read as possible, some of the
details about those interfaces have been put in the Annexes – see below);

x Section 4, with the Conclusions;
x Section 5, with the list of used Acronyms.
x Section 6, with the used References;

Annexes detailed supporting information for the deliverable. These annexes are:

x Annex A, the detailed Orchestrator Architecture;
x Annex B, a complement to Section 3, with further details about the

Orchestrator API;
x Annex C, an example of a VNF Descriptor (still a work in progress);
x Annex D, an example of a NS Descriptor (still a work in progress);
x Annex E, an example of a HEAT Template (still a work in progress).

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 11| P a g e

2. ORCHESTRATOR INTERACTIONS

This section is devoted to a description of the different components in the T-NOVA
Architecture that interact with the Orchestrator (see Figure 1-1).

2.1. Interactions with the NF Store

This section describes the interactions between the Orchestrator and the Network
Function (NF) Store.

2.1.1. Virtual Network Functions

The NF Store notifies the Orchestrator every time a new or updated VNF is available
or is deleted in the NF Store, using the VNF id generated within the NF Store, after a
successful on-boarding process.

Before this VNF is available for purchase and every time a new VNF is accepted in the
NF Store or there’s any change in the existing ones, it needs to be validated.
Registering it with the Orchestrator does this validation, mostly by parsing and
validating the VNF Descriptor (for an example of a VNF Descriptor please see Annex
C). It then notifies the NF Store, which must then mark the VNF as “available” (or
“unavailable” otherwise). Only then a Service Provider can purchase it with certain
guarantees and use that VNF in the composition of new Network Services.

The VNF lifecycle within the Orchestrator may have several (and, ideally, configurable)
options, of which the following have been chosen in the first implementation.

An update of a VNF that has already been registered in the Orchestrator generates a
new version of that VNF (within the Orchestrator). This is to cover the possibility of
having a VNF update while instances of the previous version of that same VNF are
part of Network Services that are still running. Clean up processes must be designed
and implemented, in order to keep the VNF Catalogue free of old and unused
versions of VNFs.

Deleting a VNF will delete all versions of that VNF. It remains to be decided if
deleting a VNF with instances still running will fail (the simplest version), mark that
VNF as deleted (thus not allowing new NS instances to be launched with it) or
immediately shutting down all NSs using instances of that VNF and actually deleting
it.
The interface is bidirectional, in the sense that the NF store notifies the Orchestrator
and then the Orchestrator writes on the NF Store.

2.1.2. Virtual Network Functions Images

Each VNF component (or, more precisely, every Virtual Deployment Unit – VDU – on
which every VNF component is based on) must have an ‘image’ (a file) as a basis,
which the VIM uses to instantiate that component in the infrastructure. These images
are provided by the Function Providers (FP) and are stored in the NF Store, to be later

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 12| P a g e

used in the provisioning of the related VNF. The URI of those images must be part of
the VNFD.

Whenever a Customer buys a new instance of a Network Service (NS) in the
Marketplace, the Orchestrator knows from the NS Descriptor (for an example of a NS
Descriptor please see Annex D) which VNFs are part of that NS and requests the VNF
manager to provision each one of those VNFs and the WICM to provision the
connection(s) needed. The VNF Manager asks the VIM to provision each VNF
Component, passing the URL of the image.

2.2. Interactions with the Marketplace

This section describes the interactions between the Orchestrator and the
Marketplace.

2.2.1. Network Services

The Marketplace must notify the Orchestrator whenever the Service Provider
successfully creates, updates or deletes a Network Service (NS) in the Business Service
Catalogue (BSC). Any change in that catalogue is communicated to the Orchestrator
by sending the descriptor associated to that service (NSD). The NSD is syntactically
validated in the Orchestrator, and the result is communicated back to the
Marketplace, making it “available” (or “unavailable” otherwise). Only available NSs can
be sold to Customers and instantiated.

Since the NS is first created in the Marketplace, its unique ID (:ns_id) is generated
there and must be part of the request body made to the Orchestrator.

The Orchestrator’s behaviour when a new version of an already registered NS
appears will be configurable, but we have for now adopted the following: an update
of a NS that has already been registered in the Orchestrator generates a new version
of that NS (within the Orchestrator). This is to cover the possibility of having a NS
update while instances of the previous version of that same NS are still running.
Clean-up processes must be designed and implemented, in order to keep the NS
Catalogue free of old and unused versions of NSs.

It is assumed that a NS is deleted only when there aren’t any instances of it running.

2.2.2. Network Service Instantiation

The Marketplace notifies the Orchestrator to instantiate and deploy a registered NS.

Through the Marketplace, a Customer selects one of the available services, purchases
it and decides to start using it. Through the Marketplace’s Service Selection module,
the specific parameters of the service are configured and passed to the Orchestrator,
along with the id of the NS to instantiate. As a result of the instantiation process, the
Orchestrator returns the IDs of the newly instantiated service and the VNFs that will
be stored in the Accounting module (also part of the Marketplace) in order to track
them.

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 13| P a g e

A successful NS Instance creation returns the unique :nsi_id (note the ‘i’ for ‘instance’),
generated by the Orchestrator, which must be used by the Marketplace for future
requests. A successfully created NS instance is left in the ‘Started’ state. It is assumed
that only NS instances in the ‘Stopped’ state can be deleted.

Instantiating a NS implies instantiating the VNFs that are part of that NS. New VNF
instances will be created based on the most recent VNF version registered (see
Manage VNFs, above). Since the VNF instance is a resource created within the
Orchestrator, this creation returns a VNF instance id that has to be used in further
interactions with the Orchestrator with respect to a specific VNF instance.

Like in deleting a VNF (above), deleting a running VNF instance might either:

x Always succeed, assuming that the NS instance that it is part of is already
stopped and ready to be deleted (the simplest option);

x fail if the NS Instance it is part of is still running;
x imply immediately stopping the NS instance that it is part of and then be

deleted;
x be tagged as 'to-be-deleted' and wait for the NS that it is part of to be

stopped and then be deleted

Possible states of a VNF instance are:

x Requested
x Started
x Stopped

The VNF instance is in the Requested state while it is being provisioned in the VIM. It
is expected that the newly and successfully instantiated NS starts its lifecycle in the
‘started’ state.

2.2.3. Network Service Instance Change of State

When the Customer changes the state of one of his/her NS instance, using the
Marketplace’s dashboard, this change must be communicated to the Orchestrator, so
that the corresponding action must be taken. A successful change in the state of a NS
is reflected in the VNFs that are part of it and the connections between them. This
change is communicated back to the Marketplace.

Possible states are:

x Requested
x Started
x Stopped

The NS instance is in the Requested state while the VNF instances that are part of it
are being provisioned in the VIM, the connections between the (possibly) different
PoPs are being established, etc. If the change of state is a request from the Customer
to stop the NS, the given NS instance is stopped (as well as all the VNF instances that
composed the service and all the connections between those VNFs and the WAN)
and all the resources released. This change of state is than communicated back to the
Marketplace, for the correct actions (e.g., bill the service) to take place.

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 14| P a g e

When this change is due to operational reasons (i.e., on the Orchestrator side, like
when the agreed Service Level Agreement – SLA – is broken), the change is
communicated to the Marketplace, which then must take the appropriate actions.

2.2.4. Network Service Instance Change of Configuration
Parameters

Whenever the Customer needs to change any parameter in the current configuration
of a NS (e.g., the connection points, etc.), the Marketplace notifies the Orchestrator
about this change in the configuration parameters for an already deployed NS
instance. The NS is modified and the result is returned to the Orchestrator.

2.2.5. Network Service Instance Request for Metrics

The Orchestrator maintains a record of all the variables that were specified to be
monitored in the NS/VNF Descriptors. The SLA module in the Marketplace queries
the monitoring system in the Orchestrator to collect metrics to show that the SLA is
being met. This interface is used also when a user needs statistics on how a given NS
instance is performing. These metrics are used to generate statistics in case the caller
is the Dashboard or to evaluate the SLA of the service and its functions for later
billing purposes in case the caller is the SLA module.

An initial approach to the valid the states a NS instance may be in is as follows:

x Setup: the NS instance is still being set-up;
x Start: the NS instance is started;
x Stop: the NS instance is stopped;
x Terminate: the NS instance resources are still being released.

2.3. Interactions with the VIM

This section describes the interactions between the Orchestrator and the VIM.

2.3.1. Network Service Multitenancy

The T-NOVA Orchestrator will host multiple Network Service intances that will be
requested by the Marketplace users (the Customers) and it should guarantee the
proper level of isolation and security of each NS.

Each PoP has an OpenStack installation that includes the Keystone module. Keystone
provides identity, authentication and authorization services for all other OpenStack
modules, acting as a common authentication system across the cloud operating
system.

The process of the instantiation of a NS starts with the Service Mapping microservice,
which identifies the best PoPs for each VNF composing the NS. After that
identification, the Orchestrator interacts with the PoP’s Keystone to create a new
Tenant and User that will be used by the VNFMs to request provisioning, scaling
decommissioning operation to the VIM.

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 15| P a g e

When the NS instance is terminated, the Orchestrator deletes users and tenants that
are no longer be required.

2.3.2. Resource Allocation

For each data centre a Virtual Infrastructure Manager (VIM) guarantees the
management and the allocation of the necessary virtual resources for the deployment
of VNFs. These VNFs are composed of one or more virtual machines (VMs), which
require the allocation of vCPUs, RAM and storage. The VIM is also responsible for
creating and allocating the necessary network resources inside the Data centre.

VNF Provisioning is the Orchestrator microservice responsible for interacting with the
VIM in order to request a deployment of a VNF, and HEAT is the OpenStack
orchestration engine [7] responsible accepting requests and instantiating all the
necessary infrastructure resources. HEAT provides a REST API [8] that the
Orchestrator can use to request the creation of a VNF, the scaling of a VNF,
information about a VNF and the termination of a VNF. Because HEAT only supports
a specific kind of request in the form of a Heat Orchestration Template (HOT) to
describe the required infrastructure, the Orchestrator must use the HOT Generator
microservice to translate a VNFD to a HOT document. When HEAT receives this
document it interacts with other OpenStack components to create the entire
infrastructure in the correct order to launch the VNF. When infrastructure scaling is
needed, the Orchestrator only needs to send the new HOT version to HEAT so that it
updates the existing stack. For the termination of the VNF, the VNF Provisioning
microservice sends a request to HEAT, which deletes all of the resources that have
been allocated to the VNF.

The usage of the HEAT orchestration engine provides an advantage because it
abstracts the interaction with all the other components of OpenStack however it does
not have the concept of a NS.

2.3.2.1. Resource Allocation in Detail

From an infrastructure point of view, a generic VNF may be very complex, since it can
be composed by several VNFCs, each of them implemented as a VM, connected
through many different networks (both internal and external), not to mention
additional storage/network resources (e.g. block storage volumes, load balancers,
firewalls, etc.) and deployment policies (e.g. anti-affinity rules to guarantee HA
deployment).

Therefore, if not properly governed, both first-time deployment and lifecycle
management of a VNF can be cumbersome and subject to error. In order to
overcome these problems:

1) The infrastructure characteristics of a VNF, e.g. its topology, required
resources and deployment policies, are described by means of HEAT
templates;

2) The required infrastructure for a given VNF instance is requested by the
VNFM to the VIM by means of OpenStack HEAT REST APIs. VIM credentials
will be made available to the VNFM by the Orchestrator.

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 16| P a g e

HEAT is an orchestration engine, included in OpenStack, for provisioning and
management of arbitrarily complex Infrastructure as a Service (IaaS) infrastructures.
The infrastructure is described in a text file, called template. At provisioning time, the
Heat engine interprets the template and deploys the corresponding infrastructure by
orchestrating calls to the APIs of other OpenStack modules, as shown in Figure 2-1.

Figure 2-1: OpenStack modules.

An instance of a template is called a stack. Heat templates can be modelled in two
different formats:

x CFN – Compliant with Amazon CloudFormation, written in JSON
x HOT – Heat Orchestration Template, written in YAML. Introduced in the

Icehouse release, is the new de-facto standard and will replace the CFN format over
time.

Independently from its format, a generic template is structured in three different
sections, as shown in Figure 2-2.

Figure 2-2: A HEAT template structure.

x Parameters: Declaration of input parameters that have to be provided when
instantiating the template (optional)

x Resources: declaration of the resources (e.g. compute, network, storage, etc.) that
make up the infrastructure template (mandatory)

x Outputs: declaration of output parameters (e.g. IP addresses of the VMs) available to
the user once the template is instantiated (optional)

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 17| P a g e

A very simple template, containing the definition of a single Virtual Machine is shown
in Figure 2-3, highlighting also the three sections of the template:

Figure 2-3: Example of a HEAT file.

A more complete HEAT template is available in Annex Annex E.

The following paragraphs provide guidelines both for the definition and for the
provisioning of VNF templates.

Template Format

Application Templates shall be modelled using the HOT format [9], which is the new
reference standard since the OpenStack Icehouse release [10], replacing the AWS-
CloudFormation format. Although AWS-CloudFormation is (and will continue to be)
supported for binary compatibility with the Amazon Public Cloud, the OpenStack
team does not plan to invest on it, meaning that new and innovative features will be
developed only for HOT.

The complete HOT reference guide is available on the OpenStack public website [9].

High Availability deployment of VNFs

High Availability (HA) deployment of VNFs can be enforced directly in the HOT
template by recurring to anti-affinity rules. Anti-affinity rules, supported by
OpenStack through nova-scheduler’s ServerGroupAntiAffinityFilter, allow
specification VM groups that should be placed on different physical hosts, so that, if a
host fails and a VM is lost, the service will still be provided by VMs running on other
hosts.

The usage of anti-affinity rules in HOT templates is quite simple, as shown in the
following example:

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 18| P a g e

Figure 2-4: Sections in a HOT template.

In Figure 2-4:

1. Defines a new Nova::ServerGroup, named anti_affinity_group, with
anti-affinity policy;

2. Place VMs instance_1 and instance_2 in the anti_affinity_group
defined in the previous step. After provisioning, the two VMs are guaranteed
to be running on two different compute nodes.

VNF Provisioning

Provisioning of the infrastructure needed by a VNF is done by the VNFM by invoking
OpenStack Heat’s “Create Stack” REST API on the VIM [7].

In order to simplify the integration between the VNFM and the VIM, Application
Vendors may leverage existing SDKs for different programming languages, including
Java, node.js, .NET, Ruby, PHP and Python, which are available and well documented
on the OpenStack public website [11].

A very simple example, using the OpenStack command line interface (CLI), is shown
hereafter:

$ heat stack-create MyVNF --template_url http://address:port/MyVNF.yaml

VNF Scale-in/out

Even if OpenStack HEAT has built-in support for auto-scaling [12], this is currently
quite limited, since it can only be triggered through Infrastructure KPIs measured by
Ceilometer (e.g. CPU consumption), but not through Application/Service KPIs (e.g. #
of concurrent calls).

Since Application/Service KPIs are not taken into consideration, an automated scaling
process can potentially lead to undesired and/or unnecessary scaling operations.

Therefore, the recommended scaling guideline is as follows:

1) A HEAT Template is defined for every flavour of the VNF (e.g. Small, Medium, Large)
2) The VNFM instantiates the VNF by requesting a “Stack-create” of one of the

templates (e.g. Medium):
$ heat stack-create mystack --template_url http://address:port/MyVNF_Medium.yaml

3) When scale-in/out is required, the VNFM requests the VIM to update an existing
stack, by invoking the “Stack-update” API and passing the corresponding template
(e.g. Large), as shown in the following example, which uses the OpenStack CLI:

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 19| P a g e

$ heat stack-update mystack --template_url http://address:port/MyVNF_Large.yaml

Template Parameterisation

VNF HEAT templates shall be generic and possible to instantiate in any Data centre.
Thus, any environment-specific setting (e.g. networks) should not be hard-wired in
the HEAT template, but rather declared as a parameter in the parameters section of
the template.

In order to simplify the deployment of a VNF template in a specific Data centre, the
VNFM may leverage Heat’s Environment support, which makes it possible to provide
default values for template parameters at instantiation time, by specifying them in
separate text files, called environments [12], which can then by passed to the “Create
Stack” request by means of the “environment” parameter. Here follows a simple
example which makes use of the OpenStack CLI:

$ heat stack-create mystack --template_url http://address:port/MyVNF_Large.yaml\

> --environment http://address:port/DC1_env.yaml

2.3.2.2. VNF images

When we mention ‘VNF images’ we are really talking about VNF Components images,
which are described by VDUs.

There are three possible approaches for the NF Store, the Orchestrator and the VIM
to deal with these images:

1. The Orchestrator copies from the NF Store all images of all the components
of a VNF, when that VNF is registered in the Orchestrator or is updated:

a. Pros: the image, a file that maybe significant in size, is already kept on
the Orchestrator’s side, prior to any instantiation of the VNF, thus
saving time for downloading it from the NF Store when an instance is
requested;

b. Cons: there must be sufficient storage space for all the images
provided by the NF Store on the Orchestrator’s side, this space is
wasted (since the same images are also kept in the NF Store);

2. The Orchestrator does not copy any image from the NF Store, only downloads
it from the NF Store when the first instance of that VNF is requested and
passes it to the VIM whenever an instance of that VNF is requested:

a. Pros: there is no storage space wasted in the Orchestrator with VNFs
that are never instantiated;

b. Cons: the VNF instantiation process will take longer, due to the
download of the image;

3. The Orchestrator does not copy any image from the NF Store and passes the
image URL that is part of the VNFD to the VIM, which executes the download:

a. Pros: there is no storage space wasted in the Orchestrator with VNFs
that are never instantiated;

b. Cons: the VNF instantiation process will take longer, due to the
download of the image;

Option #3 above is essentially a specialisation of #2. For #1, it is the VNF Catalogue
component’s responsibility to download and validate the VNF (components) images.

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 20| P a g e

In option #2, it is the VNF Provisioning’s responsibility to download and validate
those images. Option #3 delegates all responsibility to the VIM. Option #1 can also
include loading the VIM with the images, but this will only increase the waste in
storage space, making the VIM to store images of VNFs, even if they have never been
instantiated. When multiple Points-of-Presence (PoPs) are considered, this waste is
even more emphasized, with VNFC images copied to every PoP. We would also have
to take care of versioning and maintenance of out-dated images.

It is also notable that instantiation time may not be the parameter to minimise here: if
the Network Service to be instantiated includes a connection to the network at a
specific point for the customer (see section on the WICM), this will typically take
longer, thus making the time needed for downloading the VNF images irrelevant.

Our decision on this was option #3: delegate to the VIM the responsibility of fetching
the VNF components images and using them on the instantiation.

2.3.3. Infrastructure Repository

The infrastructure resource repository delivers a single source of information on the
infrastructure landscape of the T-NOVA system. The repository provides an interface
to dependent components within the T-NOVA Orchestration layer through a
middleware layer. The layer provides the Northbound REST API to the functional
components of the T-NOVA Orchestration layer such as the Orchestrator manager,
resource mapping module etc.

The middleware layer provides a common interface to all the PoP level databases
within the T-NOVA system as shown in Figure 2-5. The PoP level databases store
infrastructure information at each NFVI-PoP from the following sources:

1. Enhanced Platform Awareness Agents running on compute hosts
2. OpenStack service databases
3. OpenDaylight Controller

From the perspective of a component using the interface the location of the data and
the underlying complexity in forming the query response is abstracted. In order to
support common access to all PoPs, the relevant service endpoints needed are stored
within the middleware layer in a database.

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 21| P a g e

Figure 2-5: The Infrastructure Repository middleware layer design.

The primary function of the middleware APIs is to support retrieval of information
from the repository databases located at each NFVI-PoP. The interface does not
support other actions such as inserting, updating or deleting information in the NFVI-
PoP level databases. To be compliant with the design decisions of Task 3-1 a REST
type approach to the design of the interfaces was adopted. However additional
requirements in the interface design were also considered. The middleware API also
provides an agnostic repository implementation interface to the dependent
Orchestrator components. The design of the interfaces therefore adopted an OCCI
[13] approach to fulfil this requirement.

2.3.4. Monitoring Parameters

The Orchestrator bridges the gap between the NS instance-level monitoring
parameters that are part of the Service Level Agreement (SLA) with the Customer and
the monitoring data the Monitoring Framework (see [14]) makes available to the
Orchestrator.

2.3.4.1. Network Service Monitoring Parameters

The NS Descriptor (see Annex D) has a section named assurance_parameters that holds
the definition of the SLAs a given NS should follow (see also [1]).
 …
 "assurance_parameters": [
 {
 "name": "availability",
 "value": "GT(0.99)",
 "formula": "min(vnfs[1].availability, vnfs[2].availability)",
 "violation": [
 {
 "breaches_count": "5",

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 22| P a g e

 "interval": "120",
 }
]
 },
 …

Figure 2-6: Extract of an NSD, emphasizing the SLA parameters. For full NSD example,
please see Annex D.

These assurance parameters each having:

x a name: in this example, availability;
x a value: a comparison with a numerical constant, in this case, greater than

0.99;
x a formula: to calculate the NS parameter with the values provided by the

VNF instances parameters, as indicated in the dependencies section of the
NSD – not shown here;

x A violation definition: in this example, the availability of the NS instance
maybe less than 99% for 5 times within 120 seconds.

From this definition, whenever a new instance of this NS is asked purchased by a
Customer, the Orchestrator (the NS Monitoring microservice) builds an SLA and
asks the VNF Manager subscribe to the available parameters for each one of the
VNF instances that are part of this NS instance. The VNF Manager gathers the
name of the instances from the VNF Provisioning service and asks the VNF
Monitoring microservice to subscribe to the required monitoring parameters
published by the VIM’s Monitoring Framework.

The sequence diagram in Figure 2-7 shows these interactions.

Figure 2-7: Sequence diagram of monitoring parameter subscription.

The subscription includes a call-back URL that the VIM’s Monitoring Framework will
use to report the subscribed monitoring parameters’ readings (see below).

2.3.4.2. Subscribing Monitoring Parameters

Due to the high number of monitoring parameters available (and the predictably high
volume of those parameters’ published to the Orchestrator), we have implemented a

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 23| P a g e

subscription mechanism, which allows us to only collect, process and make available
to the Orchestrator those parameters that are part of the NS SLA.

The subscribed monitoring parameters can then be sent to the Orchestrator, to be
processed and compared with the agreed SLA. An example payload is:
{
 "SubRefId": 1cfbe83c,
 "metric": "27ad39af-0267-4f81-bdc6-deda0d64c9ac.vnf.totalflows.avg.600",
 "interval": 600,
 "CallbackURL": http://apis.t-nova.eu/orchestrator/readings/27ad39af-0267-4f81-
bdc6-deda0d64c9ac.vnf.totalflows.avg.600/
}

For further details on this mechanism please refer to [14].

2.3.4.3. Receiving Network Service Monitoring Parameters Readings

Whenever the VIM’s Monitoring Framework has a monitoring parameter reading to
send to the Orchestrator, it POSTs it and the whole process described above for
subscriptions has to be repeated but in reverse order:

1. The VNF instance is found from the name of the parameter;
2. The NS instance to which the VNF instance belongs to is found in the VNF

Instances Repository;
3. The SLA is found from the NS instance;
4. The NS instance level monitoring parameter is calculated from the SLA;
5. If there’s a breach, the NS Manager must be notified, in order to take the

appropriate action.

The sequence diagram in the next figure illustrates this flow.

Figure 2-8: Sequence diagram of the reading of a monitoring parameter.

The sequence of actions illustrated by this diagram can later be optimised, since the
reading already carries a lot of information in the monitoring parameter name (see
above).

2.3.4.4. Missing Values

In the real world, VNF (component) monitoring parameters may be missing for a
more or less significant interval of time, which will clearly impact the calculation of

http://apis.t-nova.eu/orchestrator/readings/27ad39af-0267-4f81-bdc6-deda0d64c9ac.vnf.totalflows.avg.600/
http://apis.t-nova.eu/orchestrator/readings/27ad39af-0267-4f81-bdc6-deda0d64c9ac.vnf.totalflows.avg.600/

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 24| P a g e

monitoring parameters at the NS level. There is a vast literature dealing with the
subject.

In the T-NOVA Orchestrator we are assuming as valid the last value obtained from
every monitoring parameter, knowing that this will somehow distort the NS level
monitoring parameters readings but at a manageable level.

2.3.4.5. Possible Optimisations

HTTP’s (or TCP’s, to be precise) relatively high latency [3] has led some providers of
monitoring tools to completely avoid the usage of this protocol, in favour of
protocols like UDP [4].

We are aware of this fact but, in the name of speed of implementation, we have kept
the interfaces in the monitoring ‘column’ of the architecture over HTTP. Nevertheless,
if needed be, and due to the highly modular architecture that has been implemented,
HTTP can be quickly replaced by UDP for example.

2.3.4.6. Big Data Approach

As previously stated in [1], a system approach that might be applicable in building
the monitoring column that of Real-Time Stream Processing systems [15].

Figure 2-8, above, shows how complex the processing of monitoring parameters in
the Orchestrator can be. A key focus in this task has been clearly understanding the
needs of T-NOVA and implementing a flexible and modular architecture. We are now
better positioned to evaluate such kind of systems and adopt one, in case the project
feels so.

2.4. Interactions with the WICM

This section describes the interactions between the Orchestrator and the WAN
Infrastructure Connection Management (WICM) sub-system of the T-NOVA
architecture.

Whenever a Customer purchases a Network Service using the Marketplace, and that
service needs to be connected to a specific point on the WAN (namely, where the
Customer already has other services attached to), the Orchestrator has to allocate
that connection by contacting the WICM. A successful request for this connectivity
resource returns the VLAN ID to be used in configuration of the associated VNF
instances.

Because the allocation of necessary the resources required for a requested NS
Instance may take some time before they are available on the different PoPs, the
Orchestrator must notify the WICM when this allocation ends successfully (see the
PUT method on the API table in the Annexes). These interactions are shown in Figure
2-9.

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 25| P a g e

Figure 2-9: Sequence diagram illustrating the interactions between the T-NOVA

Orchestrator, the VIM and the WICM.

2.5. Interactions with the VNFs

This section describes the interactions between the Orchestrator and the VNFs,
considering the VNF Manager as an internal component, common to all VNFs (for
further details please see [2]).

The manner in which the VNFM interacts with a VNF is shown in Figure 2-10 (for
further details please see [16]).

Figure 2-10: The VNFM and its VNFs.

In an effort to standardise the connection between the VNFM and the VNFs, a
middleware API (mAPI) has been developed that is described in the next section.

2.5.1. The mAPI

During lifecycle of a VNF the VNFM will need to interact with the VNF to carryout
configuration or reconfiguration actions. There are myriad of protocols and
technologies available to perform configuration on network functions. To avoid
selection of specific option a single one (especially when ETSI is still specifying the T-
Ve-Vnfm reference point) it was decided to place a component between the VNFM
and the VNFs. This component, the middleware API (mAPI), acts as a mediator
between the entities and abstracts the T-Ve-Vnfm reference point from the VNFM.
With this in mind, the mAPI exposes to the VNFM a single and common interface to

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 26| P a g e

perform configuration procedures on VNFs while supporting multiple technologies to
interact with VNFs. For further details please see [17].

Figure 2-11- T-NOVA partial architecture with only the VNFM, mAPI and VNFs.

Figure 2-11 shows the partial architecture of the T-NOVA platform with only the
VNFM, mAPI and VNFs. This figure illustrates the role of the mAPI as mediator in the
communication between the VNFM and the VNFs. Although the mAPI northbound
interface (NBI) could be seen as an MANO external interface (from the VNFM point-
of-view), the real external interface it is only realised in the mAPI southbound plugins.

With this implementation, the platform can easily be extended to support new
technologies without needing to change a complex component such as the VNFM.

2.5.2. Configuration Procedures (VNFM point of view)

From the VNFM point of view, the connection to VNFs is realised in a single and
common interface realised in the NBI of the mAPI. This interface is related to the VNF
lifecycle. It exposes the following operations:

1. Register VNF: this operation allows the on boarding of the VNFD in the mAPI.
Afterwards the mAPI will use the lifecycle events description in the VNFD to
deploy the configuration resource1.

2. initial_configuration: this operation allows the VNFM to provide the initial VNF
configuration.

3. start: this operation is used to ask the VNF to start providing its services.
4. stop: this operation is used to ask the VNF to stop providing its services. Two

types of stop are supported: hard and soft. A soft stop ensures a graceful
cessation of the VNF. In particular, it asks to complete any in-progress
operation before stopping the VNF. The hard stop asks to immediately cease

1 In fact there is not an explicit operation for this: the information about the VNF manager is
derived from the VNFD.

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 27| P a g e

all the operations of the VNF. The VNF remains active after the stop
operation is completed, i.e. the MV is up and running; only the service
provisioning is interrupted.

5. scale_out, scale_in: these operations are used to ask the VNF to perform
scaling out/in procedures. Then the VNF will reconfigure its internal resources
in order to accommodate new resources or release them.

6. terminate: this operation is used by VNFM to signal the
termination/destruction of the given VNF. Moreover, the configuration
resource is destroyed and can no longer be used to manage the VNF. To
pause/stop a VNF the start/stop operations are used and should not be
mistaken with the terminate VNF operation.

Figure 2-12 shows a sequence diagram of an example interaction between the VNFM
and the mAPI, when updating the configuration of a VNF.

Figure 2-12: Example of an interaction between the VNFM and the mAPI for updating a

VNF configuration.

2.5.3. External Interface Specification

The implementation and specification of the plugins available in the mAPI is still a
work in progress and will be presented in [17] (which will be released in M27 of the T-
NOVA project).

2.6. Interactions with the VNFM

This section describes the interactions between the Orchestrator and the VNFM,
when it is considered as an external component, specific to a VNF.

The VNFM, as its name indicates, is the element responsible of coordinating the
different microservices implemented for the VNFs (e.g. VNF monitoring, or VNF
provisioning). Therefore, this component will act within the orchestrator as the point
of entry of the different requests, which should be forwarded to the corresponding
microservice. Basically, this component within the orchestrator will require an
interface that allows it to proxy the different VNF lifecycle related requests.

Figure 2-13, below shows the different interactions of the VNFM within the
orchestrator, considering it is a generic module deployed for all the different VNFs
(no specific VNF Manager comes with the VNFD in this case. Refer to next section for
such case).

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 28| P a g e

Figure 2-13: interactions of the VNFM within the orchestrator.

As Figure 2-13 shows, the VNFM interacts with the VNF-Catalogue in order to on-
board newly available VNFs, as well as to retrieve information related to existing VNF
in the system, or to manage versioning of the VNFDs. It also interacts with the VNF-
Provisioning in order to instantiate the different VNFs available in the Catalogue; at
the same time it controls the status of those VNFs, since it is in charge of managing
the different deployment, update, or destroy requests of VNF instances.

The VNFM also requires an interface with the VNF Monitoring module, which
supports both reading and writing of data in the corresponding VNF Monitoring
repository. The data is received from the VIM.

The VNFM will interact with the scaling microservice, which responsibility for scaling
procedures within the VNF lifecycle.

The VNFM must allow the configuration of at least some of the services supporting it.
This configuration is done for a limited set of pre-defined parameters. These
configuration ids are one of (e.g.):

x vnf-catalogue
x vnf-provisioning
x vnf-monitoring
x vnf-scaling

These configuration ids are the 'keys' of which values are the endpoints of each one
of those services.

2.7. Interactions with other Modules/Microservices

The orchestrator is a complex, distributed system, which basically performs lifecycle
management of network services composed of virtual network functions. However, in

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 29| P a g e

order to deal with the complexity of the internal architecture, and enable maximum
performance of such a system, there is a set of additional microservices that need to
be utilised. Those microservices provide the system with required functionalities for
its internal mechanisms. There are three major modules considered as additional
functionalities:

x Gatekeeper, which provides security functionalities both with the external
orchestrator entities, and the internal microservice architecture.

x Management User Interface, which enables the human administrator to
interact with the different orchestrator functionalities.

x Internal monitoring and logging, which is utilised as an internal control
mechanism to detect errors or anomalies in the microservices.

These modules are detailed next.

Figure 2-14: Internal modules of the Orchestrator.

2.7.1. Authentication and Authorisation: Gatekeeper

The Gatekeeper is a simple microservice providing authentication and authorisation
service to any other micro (or monolithic) service(s). The module provides simple but
complete RESTful interface that supports authentication and ACL based authorisation
flow between users, orchestrator-services and Gatekeeper. This functionality is
achieved through an efficient token management system employed within the
Gatekeeper service.

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 30| P a g e

2.7.1.1. Interfaces by role

The Gatekeeper supports interactions via HTTP REST APIs. The APIs enable users,
services, and administrators to interact with it to fulfil their need for a proper
authentication and authorisation process. The interfaces it exposes can be
categorized into these three categories:

x used by users (or their proxies);
x used by registered services for authorisation needs;
x used by administrators to manage access to users and services to this

Gatekeeper service.

Interfaces for these roles are detailed next.

Administrator’s Gatekeeper interfaces

There are certain capabilities that can be accessed only by system administrators:
these are managing user accounts (create, update and delete), and registration of
services. For accessing these capabilities, the administrators must request first a
token, and using such a token, API requests can be performed. A summary of these
APIs is provided in Table 2-1.

Table 2-1: Gatekeeper administrator’s interface.

Endpoint Header
Fields

Method Description

/admin/user/ X-Auth-
Token

GET, POST List of users, registration of
new users

/admin/user/:user_id X-Auth-
Token

GET, PUT,
DELETE Read, Update details of user

account, delete user account
/admin/service/ X-Auth-

Token
GET, POST List services, register a new

service
/admin/service/:service_id X-Auth-

Token
GET, PUT,
DELETE Read, update service details,

delete service

Appropriate HTTP response-codes are returned along with descriptive messages and
other parameters as part of API call response.

Users’ Gatekeeper interfaces

Any user, admin or non-admin can user Gatekeeper to authenticate and generate
token(s) to be presented to the orchestrator service(s) for authorisation. The tokens
generated have the same capabilities as granted to the user. These permissions are
maintained in a capability list internally managed by Gatekeeper, which can only be
modified by system administrators. The tokens that are generated have a default
expiry set to 6 hours, and upon expiry, the user, or a process acting a proxy for the
user must generate a new token to continue using the orchestrator services. The
Gatekeeper APIs accessible to all users are shown below.

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 31| P a g e

Table 2-2: Gatekeeper's users interface.

Endpoint Header Fields Method Description
/auth/:user_id X-Auth-Password GET Authentication, no token is

generated
/token/ X-Auth-Uid, X-

Auth-Password
POST Authenticates user and

generates a token
/token/validate/:token_uuid X-Auth-Uid GET Validating the token

against given :user_id

Services’ Gatekeeper interfaces

When a system administrator registers a service with Gatekeeper, a unique service-
key is generated for that service. When service(s) makes a call for token authorisation
to Gatekeeper, they are required to provide their service-key as part of the request.

Table 2-3: Gatekeeper's service interface.

Endpoint Header
Fields

Method Description

/token/validate/:token_uuid X-Auth-
Service-Key

GET Validating the user token
against given :service_key

If the user has permissions to access the service, the response will authorise the
service to proceed against the token it has, otherwise the authorisation request will
be denied.

2.7.1.2. Workflows

The design of Gatekeeper allows several workflows to be implemented, but the most
common workflows are shown here.

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 32| P a g e

Figure 2-15: Creating a new user.

Figure 2-16: Registering a new service.

The process shown in Figure 2-16 shows the sequence of API calls to be made for
registering a new user account, or a new service with Gatekeeper by an admin. Once
the services are registered, and users with appropriate capabilities are registered with
the system, then a typical authentication, authorisation workflow from users request
to cooperation and coordination among orchestrator microservices in order to fulfil
the user's request via Gatekeeper will typically resemble the sequence steps shown
below.

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 33| P a g e

Figure 2-17: Sequence diagram of a user request.

The above sequence diagram describes this simple use-case: user logs in to a
dashboard (UI), makes a request to service1. Service1 needs to call service2 to satisfy
the request. The user has been allowed access to service1 and service2 from the
administrator during account creation step, and stored as capability list for this user
by Gatekeeper.

2.7.1.3. Roadmap

In order to make this simple authentication/authorisation service more secure, it is
planned to implement SSL encrypted communication links between Gatekeeper and
various actors using it. It is important to specify that Gatekeeper already takes several
steps to minimise attack possibilities, for instance no user passwords are stored, but
the cryptographically secure hashes are stored. To further strengthen the interfaces, it
is planned to allow access from actors with approved X.509 certificates only. The
certificates would be generated by consortium controlled CA and certificates issued
by any other CA will be rejected by default.

2.7.2. Management UI

The Web-based User Interface will be used as the management and configuration
point of entry for the orchestrator. Will enable two major actions: (i) to visualise all
the information stored in the different catalogues and repositories in a centralised
manner, as well as to monitor all orchestrator system metrics; and (ii) to configure
specific options for the orchestrator software system itself. But the major function of

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 34| P a g e

the UI is consuming the different APIs of the Manager in order to read all the stored
data.

2.7.3. Internal Monitoring and Logging

Considering the multi-element nature of the orchestrator (i.e. implemented by means
of different microservices), it becomes a requirement to define an internal mechanism
in order to look for problems and/or events in each one of the modules. The
challenge of this internal monitoring and logging module is to aggregate together
the different logs of each component, including aggregation of the information, and
the possibility to retrieve such information. A clear example of tools to be used for
such microservice is LogStash [18], together with ElasticSearch [19] or Kibana [20].

Additionally, this component is also in charge of controlling the status (registered, up,
down, etc.) of each microservice, as well as the coherence of the interfaces running.

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 35| P a g e

3. ORCHESTRATOR INTERFACES

This section focuses on the Orchestrator’s External interfaces. As stated in [1], the
Orchestrator interfaces use the following technologies:

x HTTP
x REST
x JSON

A microservices-based architecture (see [1]), has be adopted whose advantages are
briefly addressed in the next section. Using as a basis the previous section, this
section contains the specification of the orchestrator interfaces as they are in the NS
Manager and VNF Manager, as the entry points of the orchestrator.

3.1. Why a Microservices-based architecture?

As first described in [1], we have adopted a microservices way of organising the
several modules of the Orchestrator.

Microservices were first used by Fowler and Lewis [5] as a way to decompose
monolithic applications. A microservice is therefore responsible for a single part of
the whole functionality, using the Single Responsibility Principle [21]. It has an
independent lifecycle (deployment, update, replace and scale), thus making it easier
to evolve than its equivalent monolith.

The main reason for adopting this form of organisation was an independent scaling
advantage. Some of the Orchestrator’s interfaces and supporting microservices may
be subject to a heavy load while others will just have to handle the basic throughput
of requests a normal web application of this kind is subject to. We can speculate
which of the services might need to scale or not, and design them accordingly from
scratch, but approach may waste precious resources, needed to address other
important features. Therefore keep the initial design is kept simple and uniform, but
ready to scale later.

The main disadvantage of such an architectural organisation is the plethora of
microservices that must be tracked. However the usual mechanisms that provide
mitigation the operation of such kind of systems, such as monitoring and logging are
being implemented. This subject will be elaborated on in the remaining deliverables
of the Work Package.

3.2. External Orchestrator Interfaces

This sub-section details the external interfaces of the Orchestrator itself. The internal
structure of the Orchestrator is completely hidden from the outside: ‘client’ systems
just have one point of access to the Orchestrator. It is the Network Services’
Manager’s (NS Manager) role to redirect the requests to the intended microservice
that has the responsibility to answer that request.

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 36| P a g e

All the Orchestrator’s interfaces have its URL started by:
http://apis.t-nova.eu/orchestrator

All the calls are then routed to the correct internal component of the architecture, as
explained in [1].

Most of the REST APIs mentioned below follow this pattern, unless stated. For
example, a call from the Orchestrator to one of the Marketplace’s REST API is written
in the form:
/marketplace/<api>

3.2.1. Interfaces with the NF Store

The interface between the Orchestrator and the NF Store is for managing VNFs.

Figure 3-1: The interactions between the Orchestrator and the NF Store/Marketplace.

3.2.1.1. Accept Virtual Network Function Definitions

Virtual Network Functions (VNFs) must be present in the Orchestrator’s VNF
Catalogue before being part of any Network Service definition.

Table 3-1: VNFs interface with the NF Store.

Endpoint Header
Fields

Method Description

/vnfs X-Auth-
Service-
Key

POST Registers the new VNF in the VNF Catalogue.
The actual VNF Definition (VNFD) is part of the
VNF creation request, but is not the request in it
self. Since the VNF is first created in the NF
Store, its unique ID (:vnf_id) is generated there
and must be part of the request body.

/vnfs/:vnf_id X-Auth-
Service-
Key

PUT No specific use case was found for deleting
(DELETE operation) and reading (GET operation)

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 37| P a g e

VNFs that have already been registered in the
Orchestrator.

Since VNFs must be dealt with the VNFM, these requests are then forwarded to that
microservice.

3.2.2. Interfaces with the Marketplace

The interface between the Orchestrator and the Marketplace is for managing
Network Services (NSs) and Network Service Instances (NSIs).

3.2.2.1. Accept Network Services definitions

Network Services (NSs) must be present in the Orchestrator’s NS Catalogue before
being available for customers to purchase.

Table 3-2: NSs interface with the Marketplace.

Endpoint Header
Fields

Method Description

/network-services X-Auth-
Service-
Key

POST Registers the new NS in the NS Catalogue.
The actual NS Definition (NSD) is part of
the NS creation request, but is not the
request in itself.

/network-
services/:ns_id

X-Auth-
Service-
Key

PUT,
DELETE No specific use case was found for

reading (GET operation) NSs that have
already been registered in the
Orchestrator.

These requests are then forwarded to the NS Catalogue microservice.

3.2.2.2. Accept Network Services Instantiations Requests

Network Services Instances (NSIs) are requested whenever a Customer purchase a NS
in the Marketplace.

Table 3-3: NS Instance interface with the Marketplace.

Endpoint Header
Fields

Method Description

/ns-instances X-Auth-
Service-
Key

POST The :ns_id from which
the instance is being
requested must be
present in the request
body.

/ns-instances/:nsi_id X-Auth-
Service-
Key

PUT, GET,
DELETE

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 38| P a g e

/ns-instances/:nsi_id?state X-Auth-
Service-
Key

GET See possible states
above.

/ns-
instances/:nsi_id?state=stopped

X-Auth-
Service-
Key

GET A query for NS instances
in a certain state

/ns-instances/:nsi_id/:new_state X-Auth-
Service-
Key

PUT See possible states
above.

These requests are then forwarded to the NS Provisioning microservice.

3.2.2.3. Request NS and VNF Instances Monitoring Data

The Marketplace can request monitoring data from the Orchestrator, either at the
Network Service instance level or at the VNF instance level. The type of the instance
must be part of the request, as well as the id, as well as the start and end dates of
needed data. A maximum number of registers to return is optional, having a small
preconfigured number.

Table 3-4: Monitoring data interface with the Marketplace.

Endpoint Header
Fields

Method Description

/monitoring?instance_type=:it&inst
anceId=:it_id&metric=:name&from=:f
rom &until=:until&maxResults=:max

X-Auth-
Service-
Key

GET Accept NS instance
monitoring data
requests for displaying
in the Marketplace.

3.2.2.4. Notify NS Instance Change of State

To notify the Marketplace about an update (PUT) to a NS instance's state, the
following endpoint is available:

Table 3-5: Notification of change of state of a NS instance with the Marketplace.

Endpoint Header
Fields

Method Description

/marketplace/accounting/servicesta
tus/:ns_instance_id/:state

X-Auth-
Service-
Key

PUT

3.2.3. Interfaces with the WICM

While provisioning new NS instances, and when the customer wants the new instance
connected to a specific network (WAN) point (e.g., for redirecting traffic for a given
NFVI-PoP), this network connectivity must be established.

The WICM API with the Orchestrator is summarised in the following table.

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 39| P a g e

Table 3-6: Interface with the WICM.

Endpoint Header Fields Method Description
/vnf-connectivity X-Auth-Service-Key POST The NS instance ID must

be part of the request's
body, since VLAN ID
might not be unique.

/vnf-
connectivity/:ns_inst
ance_id

X-Auth-Service-Key PUT, GET,
DELETE DELETE destroys the

connectivity resource,
thus ending the traffic
redirection that had
been put in place.

3.2.4. Interfaces with the VNFM

The interface between the Orchestrator and the VNFM concentrates all the features
needed at the VNF level. Its URLs have the following common start:
http://apis.t-nova.eu/orchestrator/vnf-manager

3.2.4.1. Configure the VNFM

As described above, the ETSI MANO predicts the possibility of a certain VNFs
providing its own VNF Manager. Therefore this interface must considered as ‘external’
(a better wording might be ‘externally visible’), although some restrictions be must
applied. For the reasons stated above, not all operations of the default (or generic)
VNF Manager may be executed by VNF-specific VNF Managers.

Table 3-7: Interface with the VNF Manager.

Endpoint Header Fields Method Description
/configs/:config_id X-Auth-Service-Key PUT, GET Allows the configuration

of supporting services
/configs X-Auth-Service-Key GET Accessing all existing

configurations

3.2.4.2. Manage VNFs

It is the VNFM’s responsibility to manage all VNFs the Orchestrator is requested to
manage.

Table 3-8: Interface for managing VNFs with the VNFM.

Endpoint Header Fields Method Description
/vnfs X-Auth-Service-Key POST, GET Due to the above

explained reasons, this
endpoint must only be
used by the NS

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 40| P a g e

Manager. Due to the
possibly high number of
registered VNFs, the
information returned
when querying for all
VNFs will be paginated
(see [2] for details).

/vnfs/:vnf_id X-Auth-Service-Key PUT, GET,
DELETE

All these endpoints are supported by the VNF Catalogue microservice.

3.2.4.3. Manage VNF Instantiations Requests

Table 3-9: Interface for managing VNF instances with the VNFM.

Endpoint Header Fields Method Description
/vnf-instances X-Auth-Service-Key POST, GET The vnf external id of

which this resource is an
instance of must be part
of the request body.
Due to the possibly high
number of VNF
instances, the
information returned
when querying for all
VNF instances will be
paginated (see [1] for
details).

/vnf-
instances?state=:stat
e

X-Auth-Service-Key GET Returns data on all the
VNF instances that are
currently in the
indicated state. Due to
the possibly high
number of VNF
instances, this
information will be
paginated (see [1] for
details).

/vnf-
instances/:vnf_instan
ce_id

X-Auth-Service-Key PUT, GET,
DELETE

/vnf-
instances/:vnf_instan
ce_id?state

X-Auth-Service-Key GET Returns the state on
which the indicated VNF
instance is in.

/vnf-
instances/:vnf_instan
ce_id/:new_state

X-Auth-Service-Key PUT Puts the VNF instance in
the requested state.

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 41| P a g e

All these endpoints are supported by the VNF Provisioning microservice.

3.2.4.4. Receive VNF Migration or Scaling Requests

The new infrastructure onto which the VNF should migrate must be given in the body
of the request. This endpoint is used by the NS Manager when an SLA breach is
reported and the VNF migration is found to be the solution to close that breach.

Migrating a VNF instance implies:

1. allocating new resources;
2. starting all the newly allocated VNF components;
3. reconfigure the new VNF and the connections it has with other VNFs, if

existent;
4. stopping all the old VNF components;
5. releasing all the VNF allocated resources;

The general case for step #3 above might be very complex to implement, especially if
state management (e.g., the VNF instance to be migrated has a database of
significant size) is involved, when migrating that state it may take unacceptable time
and significant (network) resources might have to be consumed. For executing a VNF
instance migration the Network Service instance it is part of has to be stopped.

The kind of scaling to be executed must be given in the body of the request and can
be out or in2. It also must have been defined by the Function Provider in the VNF
Descriptor.

Table 3-10: Interface with the VNFM for scaling and migrating.

Endpoint Header Fields Method Description
/vnf-
instances/:vnf_instance_id/mi
grate

X-Auth-Service-Key PUT

/vnf-
instances/:vnf_instance_id/sc
ale

X-Auth-Service-Key PUT

All these endpoints are supported by the VNF Scaling microservice.

3.2.4.5. Receive VNF Instance Monitoring Parameters Definition

One of the steps in provisioning a new NS Instance is indicating the NS Monitoring
microservice (through an internal interface) which monitoring parameters that
particular NS instance will have. The NS Monitoring microservice decomposes the
service into its constituent VNF monitoring parameters and uses this interface to
subscribe them into the VIM’s Monitoring Framework.

2 Scaling up or down implies that features at the VIM level also support it.

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 42| P a g e

Table 3-11: Interface with the NS Manager for accepting monitoring parameters
subscriptions.

Endpoint Header Fields Method Description
/vnf-
instances/:vnf_instan
ce_id/monitoring-
parameters

X-Auth-Service-Key PUT The body of the request
must have all the
defining data for all the
monitoring parameters
at the VNF level.

This definition must be processed by the VNF Monitoring microservice.

3.3. External VNFM Interfaces

This sub-section details the external (southbound) interfaces of the Virtual Network
Function Manager (VNFM) itself. Northbound interfaces are only with the
Orchestrator, and have been described in the previous section.

As it happens for the Orchestrator, the internal structure of the VNFM is completely
hidden from the outside: ‘client’ systems just have see one point of access. It is the
VNF (NS Manager) role to redirect the requests to the microservice that has the
responsibility to answer it.

The VNFM has one particularity, though: it might be provided with a certain VNF. This
raises some issues of security, performance, etc., since it is in the Service Provider’s
infrastructure that required resources will be allocated on.

3.3.1. With the VIM

The interface between the VNFM and the VIM serves three purposes:

x to ensure the proper level of security and isolation;
x to allocate the needed infrastructure in the VIM;
x to know about which infrastructure there is (allocated or not);
x to subscribe monitoring parameters;
x to receive monitoring data about the instantiated VNFs and NSs.

These five kinds of interfaces are further described below.

3.3.1.1. Multitenancy

The multitenancy required for a given NS instance is requested to the VIM using
KEYSTONE REST API [7].

Table 3-12: Interface with the VIM for multitenancy infrastructure.

Endpoint Header Fields Method Description
/v2.0/tenants X-Auth-Token POST Create a Tenant
/v2.0/tenants/
{tenantId} X-Auth-Token

DELETE Delete a tenant

/v2.0/users X-Auth-Token POST Create a new user.

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 43| P a g e

/v2.0/users/{userId}
X-Auth-Token DELETE Delete a user

/v2.0/tenants/
{tenantId}/users/
{userId}/roles/OS-
KSADM/{roleId}

X-Auth-Token PUT Grant roles to user on
tenant

3.3.1.2. Allocate Infrastructure

The required infrastructure for a given VNF instance is requested to the VIM using
HEAT REST API [7].

Table 3-13: Interface with the VIM for allocating infrastructure.

Endpoint Header Fields Method Description
/v1/:tenant_id/stacks X-Auth-Token POST, GET For POSTs, the body of

the request must
contain the HOT. For
GETs, the body of the
request is empty

/v1/:tenant_id/stacks
/:stack_name/:stack_i
d

X-Auth-Token DELETE The body of the request
is empty

/v1/:tenant_id/stacks
/preview

X-Auth-Token POST The body of the request
must have the stack
name.

3.3.1.3. Manage the Infrastructure Repository

The interface between the Orchestrator and the VIM in terms of infrastructure
implemented through the Infrastructure Repository subsystem, which had its own
development Task and Deliverable ([22]). We therefore just summarise it in this
deliverable.

OCCI is a RESTful protocol and API for various kinds of management tasks. These APIs
support the development of interoperable tools for common tasks including
deployment, autonomic scaling and monitoring. The middleware interface was
implemented using the pyssf package. In accordance with the OCCI specification
each resource in the repository is characterised by a kind. The kind is defined by a
category in the OCCI model. This kind is immutable and specifies a resource's basic
set of characteristics. This includes its location in the hierarchy, attributes, and
applicable actions as shown in Table 3-14. The table only provides a sample of the
available kinds. Further details are in section 4.5.1 of [22].

Table 3-14: Interface (partial) with the VIM for the Infrastructure Repository.

Endpoint Methods Description
/pop/ GET, POST, PUT, DELETE Point of presence (PoP)

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 44| P a g e

/pop/link/ GET, POST, PUT, DELETE
Link between two POPs
(PoP Link)

/pop/:pop_id/stack/ GET OpenStack Stack (Stack)

/pop/:pop_id/stack/link/ GET
Link between a stack and
its resources (Stack Link)

/pop/:pop_id/vm/ GET Virtual Machine (VM)

Finally the middleware implementation support the common service authentication
mechanism (Gatekeeper) used by the T-NOVA Orchestration layer. All API calls
received by the middleware layer must be authenticated before execution.

3.3.1.4. Request the VIM for the subscription of a monitoring parameter

The VIM Monitoring Framework (see [14]) supports a subscription mechanism, as
described above, in sub-section 2.3.4). This subscription is supported using the
following API.

Table 3-15: Interface with the VIM's Monitoring Framework for subscribing monitoring
parameters.

Endpoint Header Fields Method Description
/<vimmm>/metrics-push POST The body of the request

must have all the
defining data for all the
monitoring parameters
at the VNF level.

3.3.1.5. Receive Monitoring Parameters Readings from the VIM

For the subscribed VNF-level parameters, and only for those, the VNF Manager must
be able to accept (POST operation) the reading the VIM Monitoring Framework
provides. This is done by using the endpoint of Table 3-16.

Table 3-16: Interface with the NS Manager for accepting monitoring parameters
readings.

Endpoint Header Fields Method Description
/vnf-
manager/readings/:par
ameter_name

X-Auth-Token POST The body of the request
must contain the value
and time-stamp of the
parameter’s reading.

3.3.2. With the VNFs

The interface between the VNFM and the VNFs is mainly for configuring those VNFs
and it includes two phases: registering the VNF instance and then configuring the
VNF instance.

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 45| P a g e

Table 3-17: Interface with the VNFs (through the mAPI).

Endpoint Header Fields Method Description
/vnf_api X-Auth-Token POST If successful, a VNF API

ID is returned.
/vnf_api/:vnf_api_id X-Auth-Token PUT,

DELETE PUT is used to
pause/stop the VNF.
DELETE destroys the
VNF instance.

/vnf_api/:vnf_api_id/
config

X-Auth-Token POST, PUT,
GET The POST triggers the

start command/script
associated with that
VNF instance. PUT is for
pausing/stopping the
VNF instance. The GET is
used to read the
configuration of a given
VNF API

3.4. Extensibility

Independent microservices represent an ideal implementation in order to provide a
modular solution for the service and VNF lifecycle management. Through this
modularity, and considering the rapid evolution in the NFV realm, it becomes feasible
to extend the Orchestrator in order to integrate or accommodate novel
functionalities implemented also as microservices.

In fact, all the microservices within the orchestrator follow a registration procedure
(including authentication and authorisation through the Gatekeeper). The registration
process of a microservice requires the insertion of the path where to forward the
requests together with the corresponding address where the service resides (IP and
port). For example, a new component for Service Mapping could be registered into
the NS Manager in order to let the orchestrator utilise multiple mapping algorithms
depending of each request.

The process of adding a new microservice into the orchestrator comprehends the
following logical steps:

1. Implement and deploy the microservice;
2. Request registration to the corresponding manager with the path and address

of where the service runs;
3. Registration into the Gatekeeper (with the corresponding credentials).

For a specific example, let us consider the case of where a new Service Mapping
algorithm has to be registered. Once the microservice is up and running, and with
available access, it connects to the corresponding manager utilising the following
POST method
/ns-provisioning/configs/registerService

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 46| P a g e

with a body that contains the following information:
{
 "name": "serviceMapping1",
 "path": "/service-mapping",
 "host": "127.0.0.1",
 "port": "4060"
}

Once the new mapping algorithm is registered at the provisioning module, it will thus
appear in the list of the corresponding registered microservices, which is available
through the following GET method
/ns-provisioning/configs/services

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 47| P a g e

4. CONCLUSIONS

The Orchestrator is the central sub-system of the whole T-NOVA system. It therefore
interacts with all the other sub-systems (the NF Store, the Marketplace, the VIM, the
WICM and the VNFs), through a substantial number of different interfaces, which
have been designed and described in this report.

To implement these interfaces the most up-to-date practices and technologies have
been adopted: a Representational State Transfer (REST)-based API, using JavaScript
Object Notation (JSON) as the message format and the HyperText Transfer Protocol
(HTTP) as the transport protocol.

These interfaces can be classified in two broad groups, in terms of the amount of
information conveyed and the number of requests:

x Top-down flows will typically have lengthier messages (VNFs, NSDs, HEAT
Templates), but occur less frequently;

x Bottom-up flows will typically contain short messages (responses to the top-
down requests mentioned above, monitoring data values), but occur with a
(very) high frequency.

x As we experiment further with the implementation, this may lead to
optimisation of the bottom-up flows, namely due to the higher latency HTTP
has, when compared to other transport protocols (e.g., User Datagram
Protocol, UDP) used by the industry when low latency is a requirement (e.g., in
Monitoring or Logging systems).

x The design of the whole Orchestrator API was influenced by the adoption of a
microservice-based architecture for the Orchestrator itself. The manner in
which the architecture is organised around ‘resources’ significantly lowers
barriers for integrating both internal microservices and the external interfaces.
We have seen this when the Gatekeeper, an internal authentication and
authorisation microservice, was made available to the Infrastructure
Repository (though an internal module of the Orchestrator’s architecture, it
had its own roadmap and technology stack). The Gatekeeper itself is made in
Go, while Ruby is the chosen language for the Orchestrator, which shows the
potential of usage of REST-based APIs, even internally.
We have also chosen to expose some of what initially were thought as
internal interfaces (beyond the Gatekeeper’s one, already mentioned), namely
the ones that support the interaction between the Orchestrator and the VNF
Manager, due to the fact that ETSI (see [2]) sees as a possibility certain VNFs
to bring their own VNF Manager. The Orchestrator’s team feels that it is
currently not clear how this possibility can be implemented in the general
case, due to all the impacts it may bring to the Service Provider’s
infrastructure management, in terms of security, performance, etc. As further
interactions with the Function Providers happen, we are sure that knowledge
on this feature will increase up to the level where the best decisions might be
made.

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 48| P a g e

5. ACRONYMS

Acronym Explanation

ACL Access Control List

API Application Program Interface

BSC Business Service Catalogue

CPU Central Processing Unit

FP Function Provider

HA High Availability

HOT HEAT Orchestration Template

HTTP Hypertext Transfer Protocol

IVM Infrastructure virtualisation and management

JSON JavaScript Object Notation

KPI Key Performance Indicator

mAPI Middleware API

NBI Northbound Interface

NF(Store) Network Function (Store)

NS Network Service

OCCI Open Cloud Compute Interface

ODL OpenDaylight (SDN Controller)

OSS Operations Support System

PoP Point-of-Presence

RAM Random Access Memory

REST Representational State Transfer

SBI Southbound Interface

SDN Software Defined Networking

SLA Service Level Agreement

SP Service Provider

SSH Secure Shell

SSL Secure Socket Layer

TCP Transmission Control Protocol

UDP Universal Datagram Protocol

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 49| P a g e

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

UUID Universally unique identifier (

vCPU Virtual Central Processing Unit

VDU Virtual Deployment Unit

VIM Virtual Infrastructure Manager

VM Virtual Machine

VNF Virtualised Network Function

VNFC Virtualised Network Function Component

VNFM Virtualised Network Function Manager

WAN Wide Area Network

WICM WAN Infrastructure Connection Manager

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 50| P a g e

6. REFERENCES

[1] J. Bonnet et. al., "T-NOVA Deliverable D3.01 Interim Report on the
Orchestrator Platform Implementation"

[2] ETSI GS NFV 002
(http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v
010101p.pdf)

[3] G. Banga , F. Douglis, M. Rabinovich, "Optimistic Deltas for WWW Latency
Reduction"
(https://www.usenix.org/legacy/publications/library/proceedings/ana97/full_p
apers/banga/banga_html/usenix.html)

[4] "TCP vs. UDP" (http://www.diffen.com/difference/TCP_vs_UDP)
[5] M. Fowler, J. Lewis, "Microservices"

(http://martinfowler.com/articles/microservices.html)
[6] C. Richardson, "Microservice architecture patterns and best practices"

(http://microservices.io/)
[7] OpenStack Orchestration API (http://developer.openstack.org/api-ref-

orchestration-v1.html)

[8] OpenStack REST API (http://developer.openstack.org/api-ref.html)

[9] OpenStack Template guide
(http://docs.openstack.org/developer/heat/template_guide/index.html)

[10] OpenStack Icehouse Release Notes
(https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse)

[11] Resources for application development on private and public OpenStack
clouds (http://developer.openstack.org/)

[12] Heat Environments
(http://docs.openstack.org/developer/heat/template_guide/environment.html)

[13] OCCI. (2015). The Open Cloud Computing Interface. Available: http://occi-
wg.org/

[14] G. Gardikis et. al., "T-NOVA Deliverable D4.42 Monitoring and Maintenance --
Final"

[15] M. Stonebraker , U. Çetintemel, S. Zdonik, "The 8 Requirements of Real-Time
Stream Processing" (http://cs.brown.edu/%7Eugur/8rulesSigRec.pdf)

[16] P. Comi et al., "T-NOVA Deliverable D2.42 Specification of the Network
Function framework and T-NOVA Marketplace"

[17] B. Parreira et al., "T-NOVA Deliverable D5.2 Function Deployment,
Configuration and Management"

[18] LogStash (https://www.elastic.co/products/logstash)
[19] ElasticSearch (https://www.elastic.co/products/elasticsearch)
[20] Kibana (https://www.elastic.co/products/kibana)

http://developer.openstack.org/api-ref-orchestration-v1.html
http://developer.openstack.org/api-ref-orchestration-v1.html
http://developer.openstack.org/api-ref.html
http://docs.openstack.org/developer/heat/template_guide/index.html
https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse
http://developer.openstack.org/
http://occi-wg.org/
http://occi-wg.org/
http://cs.brown.edu/~ugur/8rulesSigRec.pdf

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 51| P a g e

[21] "Single Responsibility Principle" (http://www.oodesign.com/single-
responsibility-principle.html)

[22] M. McGrath et al., "T-NOVA Deliverable D3.2 Infrastructure Resource
Repository"

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 52| P a g e

Annexes

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 53| P a g e

Annex A THE ORCHESTRATOR ARCHITECTURE

The T-NOVA Orchestrator Architecture is presented in Figure A-1.

Figure A-1: The Orchestrator Architecture.

T-NOVA | Deliverable D3.1 Interfaces

© T-NOVA Consortium | P a g e

54

Annex B THE ORCHESTRATOR API

This Annex lists the options and standards supporting the Orchestrator’s APIs, as well
as the APIs themselves.

B.1NS Manager

Table B-1: The NS Manager's API

URI Method Purpose
/ GET REST API Structure and

Capability Discovery
/configs/registerService POST Register a service configuration
/configs/unRegisterService/{microservice} POST Unregister a service

configuration
/configs/services GET List all services configuration
/configs/services PUT Update service configuration
/configs/services/{name}/status PUT Update service status
/{path} GET Redirects a GET request to the

specified microservice
/{path} POST Redirects a POST request to the

specified microservice
/{path} DELETE Redirects a DELETE request to

the specified microservice

B.1.1Return codes

Table B-2: The NS Manager's API return codes.

Code Description
200 OK
400 Bad Request
404 Not Found
415 Unsupported Media Type
500 Internal Server Error

B.2VNF Manager

Table B-3: The VNF Manager's API

URI Method Purpose

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 55| P a g e

/ GET REST API Structure and
Capability Discovery

/vnfs GET List all VNFs
/vnfs/{external_vnf_id} GET List a specific VNF
/vnfs POST Store a new VNF
/vnfs/{external_vnf_id} PUT Update a stored VNF
/vnfs/{external_vnf_id} DELETE Delete a specific VNF
/vnf-instances POST Request the instantiation

of a VNF
/configs GET List all services

configurations
/configs/{config_id} GET List a specific service

configuration
/configs/{config_id} PUT Update a service

configuration
/configs/{config_id} DELETE Delete a service

configuration

B.2.1Return codes

Table B-4: The VNF Manager's API return codes

Code Description
200 OK
400 Bad Request
404 Not Found
415 Unsupported Media Type
500 Internal Server Error

B.3Interface between the VNFM and the VIM

B.3.1Infrastructure allocation

Table B-5: The VNF Manager's AP with the VIMI

URI Method Purpose
/v1/:tenant_id/stacks POST, GET Provision a VNF.

The body of the
request must
contain the body

/v1/:tenant_id/stacks/:stack_name/:stack_id PUT, DELETE

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 56| P a g e

/v1/:tenant_id/stacks/preview POST The body holds the
stack name

In the response body of a POST the client receives the stack URL that contains the
stack ID and the stack name to use in subsequent calls to HEAT:
{
 "stack": {
 "id": "3095aefc-09fb-4bc7-b1f0-f21a304e864c",
 "links": [
 {
 "href":
"http://192.168.123.200:8004/v1/eb1c63a4f77141548385f113a28f0f52/stacks/simple_stack/3
095aefc-09fb-4bc7-b1f0-f21a304e864c",
 "rel": "self"
 }
]
 }
}

In the response body of a GET the client receives something like::
{
 "stacks": [
 {
 "creation_time": "2014-06-03T20:59:46Z",
 "description": "sample stack",
 "id": "3095aefc-09fb-4bc7-b1f0-f21a304e864c",
 "links": [
 {
 "href":
"http://192.168.123.200:8004/v1/eb1c63a4f77141548385f113a28f0f52/stacks/simple_stack/3
095aefc-09fb-4bc7-b1f0-f21a304e864c",
 "rel": "self"
 }
],
 "stack_name": "simple_stack",
 "stack_status": "CREATE_COMPLETE",
 "stack_status_reason": "Stack CREATE completed successfully",
 "updated_time": "",
 "tags": ""
 }
]
}

In the response body of a preview the client receives something like::
{
 "stack": {
 "capabilities": [],
 "creation_time": "2015-01-31T15:12:36Z",
 "description": "HOT template for Nova Server resource.\n",
 "disable_rollback": true,
 "id": "None",
 "links": [
 {
 "href":
"http://192.168.122.102:8004/v1/6e18cc2bdbeb48a5basad2dc499f6804/stacks/test_stack/Non
e",
 "rel": "self"
 }
],
 "notification_topics": [],
 "parameters": {
 "OS::project_id": "6e18cc2bdbeb48a5basad2dc499f6804",
 "OS::stack_id": "None",
 "OS::stack_name": "teststack",
 "admin_user": "cloud-user",
 "flavor": "m1.small",
 "image": "F20-cfg",
 "key_name": "heat_key",
 "server_name": "MyServer"

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 57| P a g e

 },
 "parent": null,
 "resources": [
 {
 "attributes": {},
 "description": "",
 "metadata": {},
 "physical_resource_id": "",
 "properties": {
 "description": "Ping and SSH",
 "name": "the_sg",
 "rules": [
 {
 "direction": "ingress",
 "ethertype": "IPv4",
 "port_range_max": null,
 "port_range_min": null,
 "protocol": "icmp",
 "remote_group_id": null,
 "remote_ip_prefix": null,
 "remote_mode": "remote_ip_prefix"
 },
 {
 "direction": "ingress",
 "ethertype": "IPv4",
 "port_range_max": 65535,
 "port_range_min": 1,
 "protocol": "tcp",
 "remote_group_id": null,
 "remote_ip_prefix": null,
 "remote_mode": "remote_ip_prefix"
 },
 {
 "direction": "ingress",
 "ethertype": "IPv4",
 "port_range_max": 65535,
 "port_range_min": 1,
 "protocol": "udp",
 "remote_group_id": null,
 "remote_ip_prefix": null,
 "remote_mode": "remote_ip_prefix"
 }
]
 },
 "required_by": [
 "server1"
],
 "resource_action": "INIT",
 "resource_identity": {
 "path": "/resources/the_sg_res",
 "stack_id": "None",
 "stack_name": "teststack",
 "tenant": "6e18cc2bdbeb48a5b3cad2dc499f6804"
 },
 "resource_name": "the_sg_res",
 "resource_status": "COMPLETE",
 "resource_status_reason": "",
 "resource_type": "OS::Neutron::SecurityGroup",
 "stack_identity": {
 "path": "",
 "stack_id": "None",
 "stack_name": "teststack",
 "tenant": "6e18cc2bdbeb48a5b3cad2dc499f6804"
 },
 "stack_name": "teststack",
 "updated_time": "2015-01-31T15:12:36Z"
 },
 {
 "attributes": {
 "accessIPv4": "",
 "accessIPv6": "",
 "addresses": "",
 "console_urls": "",
 "first_address": "",
 "instance_name": "",
 "name": "MyServer",
 "networks": "",

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 58| P a g e

 "show": ""
 },
 "description": "",
 "metadata": {},
 "physical_resource_id": "",
 "properties": {
 "admin_pass": null,
 "admin_user": "cloud-user",
 "availability_zone": null,
 "block_device_mapping": null,
 "config_drive": null,
 "diskConfig": null,
 "flavor": "m1.small",
 "flavor_update_policy": "RESIZE",
 "image": "F20-cfg",
 "image_update_policy": "REPLACE",
 "key_name": "heat_key",
 "metadata": {
 "ha_stack": "None"
 },
 "name": "MyServer",
 "networks": [
 {
 "fixed_ip": null,
 "network": "private",
 "port": null,
 "uuid": null
 }
],
 "personality": {},
 "reservation_id": null,
 "scheduler_hints": null,
 "security_groups": [
 "None"
],
 "software_config_transport": "POLL_SERVER_CFN",
 "user_data": "",
 "user_data_format": "HEAT_CFNTOOLS"
 },
 "required_by": [],
 "resource_action": "INIT",
 "resource_identity": {
 "path": "/resources/hello_world",
 "stack_id": "None",
 "stack_name": "teststack",
 "tenant": "6e18cc2bdbeb48a3433cad2dc499sdf32234"
 },
 "resource_name": "hello_world",
 "resource_status": "COMPLETE",
 "resource_status_reason": "",
 "resource_type": "OS::Nova::Server",
 "stack_identity": {
 "path": "",
 "stack_id": "None",
 "stack_name": "teststack",
 "tenant": "6e18cc2bdbeb48a3433cad2dc499sdf32234"
 },
 "stack_name": "teststack",
 "updated_time": "2015-01-31T15:12:36Z"
 }
],
 "stack_name": "test_stack",
 "stack_owner": "admin",
 "template_description": "HOT template for Nova Server resource.\n",
 "timeout_mins": null,
 "updated_time": null
 }
}

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 59| P a g e

B.3.2Return codes

Table B-6: The VNF Manager's API with the VIM return codes

Code Description
200 OK
400 Bad Request
401 Unauthorized
404 Not found
409 Conflict
500 Internal Server Error

B.4Interfaces compilation, installation and deployment Guide

This section has all the information on how to access the source code for the
interfaces, how to install the prototype, and how to deploy it if required.

All the software developed is located in the corresponding repository
http://stash.i2cat.net/

To access and install the code the following user and password are required:
User: tnova_reviewer

Password: 2ndreview

You need to run the following commands to download the code:

First, download all the orchestator microservices from source code
$ git clone http://username@git.i2cat.net/scm/TNOV/wp3.git

$ cd wp3/WP3/

Download, resolve and install all the dependencies required for each microservice:
$ cd orchestrator_{microservice_name}

$ bundle install

Run each microservice without follow any order:
$ cd orchestrator_{microservice_name}

$ rake start

Some microservices require external applications for execute the run command.
These external applications are databases: PostgreSQL and Apache Cassandra.

In the case that the PostgreSQL is required, the following command will create the
database and the corresponding tables:
$ rake db:create

$ rake db:migrate

In the case of Apache Cassandra, the database schema should be loaded directly into
Cassandra:
$ cd orchestrator_ns-monitoring-repository

$ apache-cassandra/bin/cqlsh –f db/schema.txt

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 60| P a g e

B.4.1Gatekeeper

The Gatekeeper code is located in the same repository:
http://stash.i2cat.net/

You need to run the following commands to install the code:

Install
$ cd wp3/WP3/orchestrator_gatekeeper

$ go get

$ go install

Run
$ go run*.go

B.4.2Management UI

The management user interface is located in the same repository:
http://stash.i2cat.net/

You need to run the following commands to install the code:

Install
$ cd wp3/WP3/orchestrator_mgt-gui

$ mvn clean install -DskipTests

Run
$ mvn jetty:run

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 61| P a g e

Annex C VNF DESCRIPTOR

This annex shows an example of a full VNF Descriptor, as it is being used by the FPs,
at the time of writing. The content of this kind of file will probably change until the
end of the project.

{
 "vnfd": {
 "release": "T-NOVA v.0.1",
 "id": "id number",
 "vendor": "vendor generating this VNFD",
 "provider_id": "function provider id",
 "description": "description of the function of the VNF",
 "description_version": "version of this VNFD",
 "version": "version of VNF software",
 "type": "TC / should an ontology be defined or this is free text input?",
 "__comment": "maybe include some keyword selection i.e storage and be included
here",
 "__comment": "in order to be used efficiently deployed",
 "date_created": "date created e.g 2015-06-11T13:10:00Z",
 "date_modified": "date modified",
 "trade": "TRUE",
 "billing_model":{
 "model": "billing model informantion e.g. PAYG",
 "period": "billing period e.g. P1W",
 "price" :{
 "unit":"billing unit e.g. EUR",
 "min_per_period":"5",
 "max_per_period":"10",
 "setup":"0"
 }
 },
 "vdu": [
 {
 "id": "vdu uuid1",
 "vm_image": "image reference uri",
 "computation_requirement": {
 "vcpus": "number of virtual cpus"
 },
 "virtual_memory_resource_element": "virtual memory needed eg 10M",
 "virtual_network_bandwidth_resources": "virtual bandwidth eg 10Mbit",
 "lifecycle_event": {
 "driver": "SSH",
 "Authentication": "private_key.pem",
 "Authentication_Type":"private key",
 "__comment": "information about IP resides in the VNFR not VNFD",
 "VNF_Container":"path/to/container e.g. /home/tnova/container/",
 "start": {
 "command": "service vnf start",
 "template_file_format": "json",
 "Template_file": {
 "controller": "get_attr: [controller, floating_ip]",
 "__comment": "we should identify the vdu that is the
controlling/managing vdu for all the VNFCs, this implies that a tag should be placed
in that vdu",
 "__comment": "assumption that that vdu is the first to start and
delegates all the other config commands to the rest",
 "vdu1":"get_attr: [instance1, mngt_network_ip]",
 "vdu2":"get_attr: [instance2, mngt_network_ip]"
 }
 },
 "stop": "path/to/script",
 "restart": "path/to/script"
 },
 "constraint": "placeholder for other constraints",
 "high_availability": "ActiveActive or ActivePassive",
 "scale_in_out": {
 "minimum": "minimum number of instances",
 "maximum": "maximum number of instances"
 },

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 62| P a g e

 "vnfc": [
 {
 "id": "vnfcid1",
 "connection_point": [
 {
 "id": "connectionpointidvnfc1",
 "vitual_link_reference": "virtual link reference",
 "type": "virtual/physical port/nic or vpn endpoint ip"
 },
 {
 "id": "connectionpointidvnfc2",
 "vitual_link_reference": "virtual link reference",
 "type": "virtual/physical port/nic or vpn endpoint ip"
 }
]
 },
 {
 "id": "vnfcid2",
 "connection_point": [
 {
 "id": "connectionpointidvnfc3",
 "vitual_link_reference": "virtual link reference",
 "type": "virtual/physical port/nic or vpn endpoint ip"
 },
 {
 "id": "connectionpointidvnfc4",
 "vitual_link_reference": "virtual link reference",
 "type": "virtual/physical port/nic or vpn endpoint ip"
 }
]
 }
],
 "monitoring_parameters": [
 {
 "monitoring_parameter": "memory-consumption"
 },
 {
 "monitoring_parameter": "CPU-utilization"
 },
 {
 "monitoring_parameter": "bandwidth-consumption"
 },
 {
 "monitoring_parameter": "VNFC-downtime"
 }
],
 "cpu_instruction_set_extension": "",
 "cpu_model": "",
 "cpu_model_specification_binding": "",
 "cpu_min_clock_speed": "",
 "cpu_core_reservation": "",
 "cpu_simultaneous_multi_threading_hw_thread_specification": "",
 "cpu_core_oversubscription_policy": "",
 "cpu_core_and_hw_thread_allocation_topology_policy": "",
 "cpu_last_level_cache_size": "",
 "cpu_direct_io_access_to_cache": "",
 "cpu_translation_look_aside_buffer_parameters": {
 "TLB_size": "",
 "TLB_large_page_support": "",
 "IOTLB_size": "",
 "IOTLB_large_page_support": ""
 },
 "cpu_hot_add": "",
 "cpu_support_accelerator": "",
 "memory_parameters": {
 "type": "",
 "speed": "",
 "channels": "",
 "size": "",
 "error_correction_codes": "",
 "oversubscription_policy": "",
 "bandwidth_required": "",
 "large_pages_required": "",
 "NUMA_allocation_policy": ""
 },
 "memory_hot_add": "",
 "platform_security_parameters": {

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 63| P a g e

 "random_number_generation": "",
 "measure_launch_environment": ""
 },
 "hypervisor_parameters": {
 "type": "",
 "version": "",
 "second_level_address_translation": "",
 "second_level_address_translation_with_large_page_support": "",
 "second_level_address_translation_for_io": "",
 "second_level_address_translation_for_io_with_large_page": "",
 "support_for_interrupt_remapping": "",
 "support_for_data_processing_acceleration_libraries": ""
 },
 "platform_pcie_parameters": [
 {
 "type": "type of pcie device e.g. NIC",
 "general_capabilities": "",
 "bandwidth": "",
 "device_pass_through": "True/False",
 "SR-IOV": "",
 "device_assignement_affinity": ""
 }
 {
 "type:" "type of pcie device e.g. NIC"
 "general_capabilities": "",
 "bandwidth": "",
 "device_pass_through": "True/False",
 "SR-IOV": "Info rgarding SR-IOV deployment",
 "device_assignement_affinity": ""
 }
],
 "pcie_advanced_error_reporting": "",
 "platform_acceleration_device": "",
 "network_interface_card_capabilities": {
 "LSO": "",
 "LRO": "",
 "checksum": "",
 "RSS": "",
 "flow_director": "",
 "mirroring": "",
 "availability": "",
 "jumbo_support": "",
 "VLAN_tag": "",
 "RDMA": "",
 "SR-IOV": ""
 },
 "network_interface_bandwidth": "eg 1GBit",
 "data_processing_acceleration_library": "eg DPDK v1.0",
 "vswitch_capabilities": {
 "type": "ovs",
 "version": "2.0",
 "overlay_tunnel": "GRE"
 },
 "corrected_error_notification": "number of correctable errors",
 "uncorrected_error_notification": "number of error raising exceptions",
 "storage_requirements": {
 "size": "size required eg 30GB",
 "KQI1": "IOPS limit if applicable",
 "KQI2": ""
 },
 "rdma_support_bandwidth": "rdma bandwidth"
 }
],
 "virtual_link": [
 {
 "id": "vlinkid1 number",
 "connectivity_type": "E-Line, E-LAN or E-Tree",
 "connection_points_references": [
 {"id": "connection_point_id1"},
 {"id": "connection_point_id2"}
],
 "root_requirement": "root bandwidth",
 "leaf_requirement": "leaf bandwidth",
 "qos": "qos options, eg latency, jitter",
 "test_access": "none, passive monitoring, active monitoing"
 },
 {

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 64| P a g e

 "id": "vlinkid2 number",
 "connectivity_type": "E-Line, E-LAN or E-Tree",
 "connection_points_references": [
 {"id": "connection_point_id1"},
 {"id": "connection_point_id2"}
],
 "root_requirement": "root bandwidth",
 "leaf_requirement": "leaf bandwidth",
 "qos": "qos options, eg latency, jitter",
 "test_access": "none, passive monitoring, active monitoing"
 }
],
 "connection_point":[
 {
 "id": "connectionpointid1",
 "vitual_link_reference": "virtual link reference",
 "type": "virtual/physical port/nic or vpn endpoint ip"
 },
 {
 "id": "connectionpointid2",
 "vitual_link_reference": "virtual link reference",
 "type": "virtual/physical port/nic or vpn endpoint ip"
 }
],
 "lifecycle_event": {
 "__comment": "when VNFM initiates a start for this VNF, the VNFM should
communicate with",
 "__comment": "the VIM in order to spin on the VMs (NVFCs),",
 "__comment": "then sends the start command to the controll VM (VNFC)
indicated by a specific tag (TBD)",
 "__comment": "The controll VNFC reiterates the programmed actions to the
other VNFCs",
 "__comment": "Is this a valid assumption or should the VNFM communicate with
each and every VNFC in order",
 "__comment": "to configure them?",
 "driver": "driver to be used for accessing the management VNFC, e.g. SSH",
 "Authentication": "path/to/private_key",
 "Authentication_Type": "Authentication type e.g. PrivateKey/ Digest ",
 "__comment": "information about IP resides in the VNFR not VNFD",
 "VNF_Container":"path/to/container e.g. /home/tnova/container/",
 "__comment": "we should identify the vdu that is the controlling/managing vdu
for all the VNFCs",
 "__comment": "this implies that a tag should be placed in that vdu",
 "__comment": "assumption that that vdu is the first to start",
 "__comment": "and delegates all the other config commands to the rest",
 "events": [
 {
 "lifecycle_event": "start",
 "controller": "get_attr: [controller, floating_ip]",
 "vdu1":"get_attr: [instance1, mngt_network_ip]",
 "vdu2":"get_attr: [instance2, mngt_network_ip]"

 },
 {
 "lifecycle_event": "stop",
 "controller": "get_attr: [controller, floating_ip]",
 "vdu1":"get_attr: [instance1, mngt_network_ip]",
 "vdu2":"get_attr: [instance2, mngt_network_ip]"

 },
 {
 "lifecycle_event": "restart",
 "controller": "get_attr: [controller, floating_ip]",
 "vdu1":"get_attr: [instance1, mngt_network_ip]",
 "vdu2":"get_attr: [instance2, mngt_network_ip]"
 },
 {
 "lifecycle_event": "scale-in",
 "controller": "get_attr: [controller, floating_ip]",
 "vdu1":"get_attr: [instance1, mngt_network_ip]",
 "vdu2":"get_attr: [instance2, mngt_network_ip]"
 },
 {
 "lifecycle_event": "scale-out",
 "lifecycle_event": "restart",
 "controller": "get_attr: [controller, floating_ip]",
 "vdu1":"get_attr: [instance1, mngt_network_ip]",

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 65| P a g e

 "vdu2":"get_attr: [instance2, mngt_network_ip]"
 }
]
 },
 "dependency": [
 {
 "source_vdu": "sourcevduid",
 "target_vdu": "targetvduid"
 },
 {
 "source_vdu": "sourcevduid",
 "target_vdu": "targetvduid"
 }
],
 "monitoring_parameters": [
 {
 "monitoring_parameter": "memory-consumption",
 "description": "Maximum memory consumed by the VNF"
 },
 {
 "monitoring_parameter": "CPU-utilization",
 "description": ""
 },
 {
 "monitoring_parameter": "bandwidth-consumption",
 "description": ""
 },
 {
 "monitoring_parameter": "VNFC-downtime",
 "description": ""
 }
],
 "deployment_flavour": [
 {
 "id": "vnfflavourid1",
 "flavour_key": "calls5k",
 "constraint": "specific hardware constraint",
 "constituent_vdu": {
 "vdu_reference": "vduid for this deployment",
 "number_of_instances": "number of VDU instance required",
 "constituent_vnfc": "references vnfc id"
 },
 "assurance-params":[
 {
 "param-id":"memory-consumption",
 "value":"1", "unit":"MB", "formula": "memory-consumption LT 1",
 "violation": [
 {
 "breaches_count": 2,
 "interval": 30
 },
 {
 "breaches_count": 5,
 "interval": 120
 }
],
 "penalty": {
 "type" : "discount",
 "value": 5,
 "unit": "%",
 "validity": "P1D"
 }
 },
 {
 "param-id":"CPU-utilization",
 "value":"70",
 "unit":"percentage",
 "formula": "CPU-utilization GT 70",
 "violation": [
 {
 "breaches_count": 2,
 "interval": 30
 }
],
 "penalty": {
 "type" : "discount",
 "value": 5,

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 66| P a g e

 "unit": "%",
 "validity": "P1D"
 }
 }
]
 },
 {
 "id": "vnfflavourid2",
 "flavour_key": "calls10k",
 "constraint": "specific hardware constraint",
 "constituent_vdu": {
 "vdu_reference": "vduid for this deployment",
 "number_of_instances": "number of VDU instance required",
 "constituent_vnfc": "references vnfc id"
 },
 "assurance-params":[
 {
 "param-id":"memory-consumption",
 "value": 1.5,
 "unit":"MB", "formula": "memory-consumption LT 1.5",
 "violation": [
 {
 "breaches_count": 2,
 "interval": 30
 },
 {
 "breaches_count": 5,
 "interval": 120
 }
],
 "penalty": {
 "type" : "discount",
 "value": 0.05,
 "unit": "percentage",
 "validity": "P1D"
 }
 },
 {
 "param-id":"CPU-utilization",
 "value": 0.8,
 "unit":"percentage",
 "formula": "CPU-utilization LT 0.8",
 "violation": [
 {
 "breaches_count": 2,
 "interval": 30
 }
],
 "penalty": {
 "type" : "discount",
 "value": 0.05,
 "unit": "percentage",
 "validity": "P1D"
 }
 }
]
 },
 {
 "id": "vnfflavourid1",
 "flavour_key": "users50k",
 "constraint": "specific hardware constraint",
 "constituent_vdu": {
 "vdu_reference": "vduid for this deployment",
 "number_of_instances": "number of VDU instance required",
 "constituent_vnfc": "references vnfc id"
 },
 "assurance-params":[
 {
 "param-id":"memory-consumption",
 "value": 1,
 "unit":"MB",
 "formula": "memory-consumption LT 1",
 "violation": [
 {
 "breaches_count": 2,
 "interval": 30
 },

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 67| P a g e

 {
 "breaches_count": 5,
 "interval": 120
 }
],
 "penalty": {
 "type" : "discount",
 "value": 0.05,
 "unit": "percentage",
 "validity": "P1D"
 } },
 {
 "param-id":"CPU-utilization",
 "value": 0.85,
 "unit":"percentage",
 "formula": "CPU-utilization LT 0.85",
 "violation": [
 {
 "breaches_count": 2,
 "interval": 30
 }
],
 "penalty": {
 "type" : "discount",
 "value": 0.05,
 "unit": "percentage",
 "validity": "P1D"
 } }
]
 }
],
 "auto_scale_policy": [
 {
 "criteria_parameter": {
 "type": "monitoring parameter name",
 "threshold": "threshold"
 },
 "action_type": "scale-out to different flavour ID"
 },
 {
 "criteria_parameter": {
 "monitoring_parameter": "monitoring parameter name",
 "threshold": "threshold"
 },
 "action_type": "scale-out to different flavour ID"
 }

],
 "manifest_file": "path/to/file",
 "manifest_file_security": "manifest file md5 hash"
 }
}

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 68| P a g e

Annex D NS DESCRIPTOR

This annex shows an example of a full NS Descriptor, as it is being used by the
Marketplace, at the time of writing. The content of this kind of file will probably
change until the end of the project.

{
 "nsd": {
 "id": "network service id",
 "name": "name",
 "vendor": "vendor of the NS",
 "version": "version of the NSD",
 "vnfds": [
 "__comment": "NFStore-generated IDs",
 {
 "vnfd": "reference of a vnfd of this ns"
 },
 {
 "vnfd": "reference of a vnfd of this ns"
 }
],
 "vnffgds": [
 {
 "vnffgd": "reference of a vnffgd of this ns"
 },
 {
 "vnffgd": "reference of a vnffgd of this ns"
 }
], "lifecycle_event": {
 "__comment": " /* to be decided later */"
 },
 "vnf_dependency": [
 {
 "source_vnf": "sourcevnfid",
 "target_vnf": "targetvnfid"
 },
 {
 "source_vnf": "sourcevnfid",
 "target_vnf": "targetvnfid"
 }
],
 "monitoring_parameters": [
 {
 "monitoring_parameter": "availability"
 },
 {
 "monitoring_parameter": "ram-consumption"
 },
],
 "service_deployment_flavour": [
 {
 "id": "nsflavourid1",
 "flavour_key": "callspersecond5k",
 "constituent_vnf": {
 "vnf_reference": "vnfid for this deployment",
 "vnf_flavour_id_reference": "reference of vnfd:deployment_flavour:id",
 "redundancy_model": "active or standby",
 "affinity": "placement policy between instances",
 "capability": "eg instance capacity, 50% * NS capacity",
 "number_of_instances": "number of vnf instances required"
 },
 "assurance_parameters": [
 "__comment": "the values are calculated based on the values of the VNF selected
flavour",
 {
 "__comment": "",
 "name": "availability",
 "value": "GT(0.99)",
 "formula": "min(vnfs[1].availability, vnfs[2].availability)",
 "violation": [

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 69| P a g e

 {
 "breaches_count": "5",
 "interval": "120",
 "penalty": "not included, as they're not relevant to the Orchestrator"
 }
]
 },
 {
 "name": "ram-consumption",
 "value": "LT(add(vnfs[1].memory-consumption, vnfs[2].memory-consumption,
100))",
 "__comment": "/* allow 100MB extra over the combined consumption by the VNFs
*/",
 "formula": "add(vnfs[1].memory-consumption, vnfs[2].memory-consumption,
100)",
 "violation": [
 {
 "breaches_count": "5",
 "interval": "120",
 "penalty": "not included, as they're not relevant to the Orchrstrator"
 },
 {
 "breaches_count": "10",
 "interval": "300",
 "penalty": "not included, as they're not relevant to the Orchrstrator"
 }
],
 },
],
 },
 {
 "id": "nsflavourid2",
 "flavour_key": "callspersecond10k",
 "constituent_vnf": {
 "vnf_reference": "vnfid for this deployment",
 "vnf_flavour_id_reference": "reference of vnfd:deployment_flavour:id",
 "redundancy_model": "active or standby",
 "affinity": "placement policy between instances",
 "capability": "eg instance capacity, 50% * NS capacity",
 "number_of_instances": "number of vnf instances required"
 },
 "assurance_parameters": [
 "__comment": "the values are calculated based on the values of the VNF selected
flavour",
 {
 "__comment": "",
 "name": "availability",
 "value": "GT(min(vnfs[1].availability, vnfs[2].availability))",
 "formula": "min(vnfs[1].availability, vnfs[2].availability)",
 "violation": [
 {
 "breaches_count": "5",
 "interval": "120",
 "penalty": "not included, as they're not relevant to the Orchestrator"
 }
]
 },
 {
 "name": "ram-consumption",
 "value": "LT(add(vnfs[1].memory-consumption, vnfs[2].memory-consumption,
100))",
 "__comment": "/* allow 100MB extra over the combined consumption by the VNFs
*/",
 "formula": "add(vnfs[1].memory-consumption, vnfs[2].memory-consumption,
100)",
 "violation": [
 {
 "breaches_count": "5",
 "interval": "120",
 "penalty": "not included, as they're not relevant to the Orchestrator"
 },
 {
 "breaches_count": "10",

 "interval": "300",

 "penalty": "not included, as they're not relevant to the Orchrstrator"

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 70| P a g e

 }

],

 },

],

 }

],

 "t_nova_service_deployment_flavour": [

 {

 "name": "gold"

 }

],

 "billing": {

 "type": "billing model",

 "period": "billing period",

 "price":{

 "currency:": "",

 "setupCost": "",

 "price_per_period": ""

 }

 },

 "auto_scale_policy": [

 {

 "criteria_parameter": {

 "type": "monitoring parameter name",

 "threshold": "threshold"

 },

 "action_type": "scale-out to different flavour ID"

 },

 {

 "criteria_parameter": {

 "monitoring_parameter": "monitoring parameter name",

 "threshold": "threshold"

 },

 "action_type": "scale-out to different flavour ID"

 }

],

 "connection_points": [

 {

 "id": "connectionpointid1",

 "type": "virtual/physical port/nic or vpn endpoint ip"

 },

 {

 "id": "connectionpointid2",

 "type": "virtual/physical port/nic or vpn endpoint ip"

 }

],

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 71| P a g e

 "pnfds": [

 {

 "pnfd": "reference of a pnfd of this ns"

 },

 {

 "pnfd": "reference of a pnfd of this ns"

 }

],

 "nsd_security": "MD5 hash of the NSD",

 },

}

T-NOVA | Deliverable D3.1 Orchestrator Interfaces

© T-NOVA Consortium 72| P a g e

Annex E OPENSTACK’S HEAT TEMPLATE

This annex shows an example of a full HEAT Template, as it is being used by the
Orchestrator to allocate the needed infrastructure in the VIM, at the time of writing.
The content of this kind of file will probably change until the end of the project.

heat_template_version: '2014-10-16' # HEAT version
description: 'forwarder, classificaion, DPI' # VNF description

resources: # In this section the resources are defined
 # Create the 4 types of networks: Management, Monitoring, Datapath and storage
 VTC_0:
 type: OS::Neutron::Net
 properties:
 name: mngt
 VTC_1:
 type: OS::Neutron::Net
 properties:
 name: monitoring
 VTC_2:
 type: OS::Neutron::Net
 properties:
 name: datapath
 VTC_3:
 type: OS::Neutron::Net
 properties:
 name: storage

 # Each network resource described above would need a correspoding subnet resource.
 # This information is not present in the VNFD
 # Example for Management network:
 mngt_subnet:
 type: OS::Neutron::Subnet
 properties:
 network_id: { get_resource: VTC_0 }
 cidr: 192.168.40.0/24
 dns_nameservers:
 - 8.8.8.8

 # Create the resource to upload the image to Openstack
 VTC_4:
 type: OS::Glance::Image
 properties:
 container_format: bare
 disk_format: qcow2 # Image type
 location: https://api.t-nova.eu/v1/nfstore/vnfs/123/image # URI to download
image

 # VNF Instance flavour (VDU flavour)
 VTC_5:
 type: OS::Nova::Flavor
 properties:
 disk: 30 # 30GB
 ram: 2048 # 2GB
 vcpus: 2

 # VNF instance (VDU)
 VTC_6:
 type: OS::Nova::Server
 properties:
 flavor: {get_resource: VTC_5} # ID of the flavour after created in OpenStack
 image: {get_resource: VTC_4} # ID of the image after uploaded to Openstack

