SEVENTH FRAMEWORK
PROGRAMME

NETWORK FUNCTIONS AS-A-SERVICE
OVER VIRTUALISED INFRASTRUCTURES

GRANT AGREEMENT NO. 619520

Deliverable D3.2

Infrastructure Resource
Repository

Editor Michael J. McGrath (Inte)

Contributors Giuseppe Petralia, Vincenzo Riccobene (Intg| Jordi Ferrer
Riera, JosepBatallé (i2CAT), José Bonne{PTIN), Marco
Trubian (UMIMI), Francesco Liberati (CRAT), Marco Di
Girolamo (HP), George Xilouris (NCSRD)Thomas Pliakas
(CLDST)

Version 1.0
Date July 31%, 2015

Distribution PUBLIC (PU)

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

Executive Summary

The infrastructure repository is a key subsystem of the T-NOVA Orchestration layer
which provides infrastructure related information collected from the VIM and N FVI
components of the IVM layer. This subsystemis comprised of a number of key
elements and capabilities including (i) data model; (ii) resource infrastructure
repository; (iii) access mechanismgo the infrastructure repository; (iv) enhancement
of the default information resources provided by cloud and SDN environments and
(v) a resource discovery mehanism.

Analysis of the infrastructure information from the technologies selected to
implement the VIM (namely OpenStack and OpenDayligh) revealed a significant
deficit in available infrastructure information. An analysis of the various potential
implementations was carried out and a candidate was selected for a prototype
implementation. This prototype was used first to investigate if the necessary
requirements could be supported and secondly to identify new requirements which
had not previously been captured during the architectural design activities carried
out work package WP2.

Using both the learnings from the prototype and the requirements , the final design
of the infrastructure repository subsystem was developed This designcomprised of 5
key components. The first component is an enhanced platform awareness agent
which runs on the compute nodes and collects platform specific information. This
component was implemented as framework of libraries, commands and script to
collect and aggregate a rich set of compute node information. The second
component is a set of listener services. One listener is dedicated for EPA agent
messagesand a second one is dedicated to OpenStack related messages. The third
component is the EPA controller which coordinates with listener services to process
and persist updates to the repository database using data files received from the EPA
agents or OpenStack infrastructure landscape change notifications. The fourth
component is the infrastructure repository database which is responsible for storing
the infrastructure related information and the relationships between the stored
information. The database was implemented as a graph database in order to support
the encoding of the relationships between the components of the NFVI. This
approach also provided a convenient mapping of the system structures within the
NFVI and the node structures of the graph database. The final component is a
middleware API layer which provides a common OCCI compliant REST based
interface to the Orchestrator components that need to retrieve information from the
repository. The middleware layer also features a database to support the storage of
NFVI PoP ingress and egress endpoints and associated parametric data for the links.
The middleware implementation also provides support for multiple instances of the
PoP level resources repository databases ensure appropriate scalability of the
subsystem. All components have been successfully implemented and integrated to
deliver a fully functional infrastructure repository subsystem.

2|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

Table of Contents

O AL 15 1 L L0 T 6
2. REQUIREMENTS UPDAES.... ..ottt ettt e e e e e et 8
2.1. ADDITIONALREQUIREMENTS . ..utiittiiitieit it et e e et e e st e e s e s et s s s s e s s ssasssnsssnsssnsrannss 9
3. INFRASTRUCTURE REOSITORY DESIGN. ... oottt eee e 11
3.1.OVERVIEW OBNFRASTRUCTURBATA SOURCES. ...ttt tetieeneteeeeeeeeeeseneeenseenseensenaeens 11
I I O N (@ AV 7 N B F= = o T oY= 11
3.1.2. NEULTON DALADASE.cceeeeeee ettt ettt et mee et e e e et e e e e arnaaeneen 12
3.1.3. OpeNDAYIIGNL.......eiiiiiiiiei e 12,
3.2 . ENHANCEDPLATFORMAWARENESS ...t tttet et ettt et teeaseeseeaeenasenseeseeasenaseneeeaeenaeenes 13..
3.3 . REPOSITORYPROTOTYPHEDESIGNteueieeenteeseneeeseesenaeenteen st seeeteseeasesaeen e reeaeees 13..
3.4.ANAL RESOURCIREPOSITORVBUBSYSTEMARCHITECTURE. . ccutivniieeieeeeeeeeeeeeeensenneees 15
4. INFRASTRUCTURE REOSITORY SUBSYSTEM IMPLEMENTATION 24
4.1. ENHANCEDPLATFORMAWARENES AAGENTIMPLEMENTATION. .. cvuiveieeeeneeeeeeaeeneeennes 25
4.2 . INFRASTRUCTURREPOSITORYDATABASHMPLEMENTATION ... ceveeneeeeeieeeneeeeeneeneens 29
4. 3. LISTENERSERVICESMPLEMENTATION. . eu ettt et eeee et eeaeeenseesenaeenseenseeasenasenseeneenneens 32.
4.4 EPACONTROLLEFSERVICHMPLEMENTATION. 1.ttt tttuttrneeteessesnsessensessssnsesseensesnsesnnes 35
4.5 . MIDDLEWAREBAPI LAYERIMPLEMENTATION . 111 uttuettteeneensersensesnsesneesseensesnserasseesnses 37
4. 5.1. OCCI Compl.i.ant. . APL&.s........................... 38
5. INFORMATION RESOURCES..... .ottt ettt et et a e e e e eaad 45
5.1.INFRASTRUCTURRBEPOSITORYDATAMODEL .. ccuiiviiiieitieeieraseneeensesasereeensesseensesasess 47
5.2 RESOURCE/ISUALISATION. 1ttt ttuttteenteesessensssasssssssensesnstsaresten e resaeenrernreenrrarens 51
LTt T O F=Y ST Y=< s 51..
Y U LY ST O 1Y =T 52..
LT T U LY ST O 1Y =T 54..
I O LY ST O Y=Y < N 56..
6. INFRASTRUCTURE REOSITORY SUBSYEBEM INTEGRATION.....cccvveivieieiieinnns 58
6.1. RESOURCHVI APPINGALGORITHM. ...utttntitieeettseessensessesasessessssserasenseenresaserernreennes 58..
6.2. ORCHESTRATORITEGRATION ...ttt ttttetettteetseesesseseenseeste st tererarerasen e reearearens 59
6.3.ORCHESTRATIONAYERINTERFACES. ... it iutetiteeee e tteetreesaeaseseensensensensensensenrensensend 60..
6.4.SERVICEVISUALISATIONM ODULEeuitie ettt et e e ee e s e et et st e e s re s e e aesaneeneenens 60...
0.4.1. FEatures and BeNefitS . .. ccuiiei ettt e e e e e aaneeed 61
6.4.2. Service Visualisation ArChItECIUIcoeeeie e eeeeeaen e 61
5.5, GATEKEEPERI TEGRATION. 1.ttt tutttteatenten st teseaseee et enttsaen e sensen et reasensnns 62
7. INFRASTRUCTURE REOSITORY DISTRIBUTION PAGKAGE........ccociveeieeeaen, 65
8. CON C LU SION S . e e e e et 67
0. LIST OF ACR ONY M. ..o e e 69
O TR o o o N 71

3|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

Figures

Figure 1-1 T-NOVA Orchestrator ArChItECIUIE.cccieiiiiiiiiiiieieeee e 6
Figure 3-1 Prototype infrastructure repository architeCtureccccccoovviivrneeennnenn. 14
Figure 3-2 Sample of compute node PCle devViCes...........cccuvveiviiiiiiiiiiiiiiiieieeeeeeeen 14
Figure 3-3 Infrastructure Repository Sub SystemArchitecture.............cccccvveeeeierinnnns 16
Figure 3-4 High Level EPA Agent ArChiteCtUre.............coooiiiiiiiiiiieeiiiee e 18
Figure 3-5 Simple Server reSource graphi............eeeeeeeoiiiiiiirnieieee e 20
Figure 3-6 Controller SYStemM OVEIVIEW............uuiiiiiiiieeeeeiiiiiiiieie et e e e 21.
Figure 3-7 Middleware layer deSigN...........ccuuiiiiiiiiiiiiee e 22...
Figure 4-1 Infrastructure Repository 8 Key information flowsccccociiieiinninnen. 24
Figure 4-2 Hardware locality data eXtracCl.............ceeeeeeeiiiiiiiiiniiiiieeee e 26
Figure 4-3 Output of CPUINTO COMMANGcoiiiiiiiiiiiiiiiiieeee e 27.
Figure 4-4 Output Of DPDK SCIIPL.....ccciiiiiiiiiiiii et 27
Figure 4-5 Output of SR-IOV script showing total number of SR-IOV NIC virtual
FUNCLIONS ...t e e e e e e e e e e e e e e s s s bbb e eeeeeaeeeas 28
Figure 4-6 EPA Agent execution flow diagram...........cccccuveeiiiiiiiiiciiiieenieneeee e eee e 29
Figure 4-7 Cypher QUEIY reSUIL........cccoiieiiiiei e 30
Figure 4-8 OpenStack Notification Configurationseeevviiiiiiiiiiiiieeeneeee s 33
Figure 4-9 Events Listener ArChit@CtUre..........uuuvueeiiiiiicciceee e, 34.
Figure 5-1 High level data model for infrastructure repoSitorycccccvvvvvvvvvnnnnnnnns 48
Figure 5-2 Data model for compute and physical network related resources............. 49
Figure 5-3 Data model fOr COMPULE FTESOUICES..........uvrriririiiiiiiiereiee s eee e e eeeeeaeeaaeens 50
Figure 5-4 Data model for VIrtual FESOUICESuuuuuriiiiiiiieeeeeeee e e e e aaaaaae e 50
Figure 5-5 Retrieve PoPs Topology Flow Diagram................cccccooviiiiiiiiiiieieeeiiiniiiens 52
Figure 5-6 Example of a FNova POPS tOPOoIOgYc..evvviiiiiiiiiiiiiiiiiiiccee e eee e ee s 52
Figure 5-7 Retrieve VNF allocation Flow Diagram..........cccccceceeeiiieeiieniiiiieeeeeeeeeeeeeen, 53
Figure 58 VNF Resources allocation graph............ccceeeeiiiiiiiiiiiieee 54
Figure 59 Retrieve Network Topology FIow Diagram.............ccccuveeeeiieiennnniniiiiinenne. Bh..
Figure 5-10 Physical Network TOPOIOGY...........uuuuriiiiieieiiiiiiiiiiiiiee e 56.
Figure 511 Flow diagram illustrating the steps in the retrieval of network ports in
L= VL= T0 1] 2= USSR 57
Figure 512 Visualisation Network Port failure between a switch and compute node 57
Figure 6-1 Integration repository in T-NOVA Orchestrator management Ul.............. 60
Figure 6-2 Service Visualisation Module ArchiteCture...........cccccceeeiviiiiiiiniiiieeeee e 62..
Figure 6-3 Middleware Layer- Gatekeeper integrationcccuvveeeeieeeeennsiiicvinnnnns 63.

4|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

Tables

Table 2.1 Infrastructure Repository REQUIFEMENTS.evviiiiiiiiiiiiiiee e 8
Table 2.2 Additional Infrastructure Repository Requirements............ccoooecvvvieeeeneeeeenn. 9.
Table 4.1 EPA DAta FIOWS........cooiiiiiiiiieiee e 25
Table 4.2 Methods for Repository Database updates............cccceevviiiiiiiinnieieeeeeeennnnns 31..
Table 4.3 Middleware API KINGS.........cuiiiiiiiiie e 39
Table 5.1 PRYSICAl FTESOUICES.......cciiiiiiiiiiiiiee e e et e e e e e e r e e e e e e e aannes 45
Table 5.2 Virtual RESOUICES:......cooi ittt e e e 45
Table 5.3 Physical NEtWOIrK rESOUICES...........uuiiiiiiiiieeieieiiiiiiri e e e e 46..
Table 5.4 Infrastructure database information resource documentation.................... 47.
Table 6.1 Orchestrator micro service dependencCies............uuveeeerriiiiiiirnerieeeeeeeeennnes 59..
Table 6.2 GateKeEPEI AP e 62

5|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

1. INTRODUCTION

The primary goal of Task 3.2is to design and implement a resource discovery and
repository subsystem as part of the T-NOVA Orchestration layer. The infrastructure
repository subsystem is responsible for the collection and persistence of
infrastructure data available from the infrastructure virtualisation and management
(IVM) layer. The repository subsysten is also required to provide an interface to
support requests from the Orchestration layer functional components (such as the
resource mapping module) for infrastructure resource inform ation as shown in Figure
1-1. The Orchestration layer utilises this information to reason over what collection of
resource types need to be provisioned by the IVM for different types of VNFs within
the T-NOVA system. The Orchestration layerthen sends requests to the IVM to
provision the required VM resources.

NF Store REST API From/To Marketplace

Northbound Interfaces
=
g Interface Handlers
Request Pre-processing (including authorisation)
i : Inst Repository / Hist
4 Service Management and Lifecycle nstances Repository / History
Service . NS SLAJNS
Local Mapping ‘—*| Service Manager | instances —1 Mm{:m
Catalogue
- ! I !
H i we ||
O | Monitaring -
, = \

: Infrastructure : I Instantiates \
l —— 1 VNF Management and Lifecycle

—— o —

Y VNF Manager (Generic)
VNF Catalogue VNF Manager (Specific)
i
! l !
VNF VMNF Scaling / VNF
Monitoring Migration Deployment

)

[|
[\d
[Southbound Interfaces]JJ

REST API From/To VIM

Figure 1-1 T-NOVA Orchestrator Architecture

The design of the repository subsystem addresses the challenges of assimilating
infrastructure related information from sources within the IVM , namely the cloud
infrastructure and data centre network environments. This subsystem comprises a
number of key elements including a data model, resource information repositories,
access mechanismgo the information repositories. The subsystem also augments the
information provided by cloud and SDN environments through a resource discovery
mechanism.

6|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

The IVM layer of the T-NOVA system comprises of a virtual infrastructure manager
(VIM) and network function virtualisation infrastructure (NFVI). The design phase of
the repository focused initially on identifying infrastructure related information
available from the selected technologies to implement the VIM and NFVI. OpenStack
and OpenDaylight were selected to implement the VIM while standard X86 high
volume compute nodes and SDN enabled switches together with various support
technologies were selected for the NFVI implementation.

An analysis of the service databases within OpenStack (Juno release) iddified that
only limited infrastructure related information was available. For examplein the
NOVA database the only CPU information available beyond manufacturer and speed
was CPU status flags. Addressing these #ortcomings was a key goal for the
repository subsystem design and implementation.

Using learnings collected from the analysis of the information sources and the
requirements identified in the architecture related deliverables in WP2 a number of
approaches to the design of the subsystem were identified. The respective pros and
cons of each implementation were evaluated. A candidate design was selected fora
prototype implementation . This prototype was used to evaluate and refine the
proposed architecture of the subsystem and its components in cooperation with
other T-NOVA tasks such as T3.1, T3.3, T3.4, T4.1 and T4.4. This initial prototype
implementation was presented in deliverable 3.1.

Learnings from the prototype implementation were used to collect additional
requirements and to define the final architecture of the resource repository
subsystem. The final subsystem design comprises of enhanced platform (EPA)agents
running on the compute nodes in the NFVIwhich collect and report det ailed platform
information . When platform updates are available from the EPAagents, notification
messages are sent to a controller via a specific listener service Upon receipt of
messages from the EPAlistener service, data files sent by the EPA agentsd a storage
directory are processed by the controller and used to update the central repository
databases. A listener service is also used to intercept and pipeline infrastructure
related messages in OpenStack and to update the repository database via the
controller. The infrastructure repository database is implemented as a graph
database. The graph database provides a hierarchical relationship in the form of
semantically relevant connections between the nodes stored as a link. An Open Cloud
Compute Interface (OCC) [1] compliant middleware layer provides a common
interface to the resource information stored in the graph databases. Additionally the
middleware API provides an abstracted single access point to physical network
information available from OpenDaylight t hrou
layer also features a graph database whichis used to store the endpoint information
of OpenStack services for each NFWPoP under the control of the T-NOVA
Orchestrator. The database also supports storage of inter-PoP WAN connection
information which can be inserted via a REST PUT API call.

The task also defined a number of sample visualisation use cases. The use cases
focused on scenarios where the resource information stored in the repository
subsystem could be used to support specified problems or operational needs.

7|Page

T-NOVA | Deliverable D3.2

Infrastructure Resource Repository

2. REQUIREMENTSUPDATES

Initial requirements for the T-NOVA Orchestrator and the IVM were previously
documented in deliverable 2.31. As an initial step these requirements were analysed
to identify the ones with a direct mapping to necessary infrastructure repository
functionalities and features. Table 2.1 provides a listing of the relevant requirements
identified and outlines how they are addressed in the design and implementation of
the infrastructure repository subsystem

Table 2.1 Infrastructure Repository Requirements

Requirement Infrastructure Repository Support

NFVO.20 Resources Inventory
tracking

NFVO.17 Mapping Resources

Or-Vi.04Retrieve infrastructure
usage data

Or-Vi.05Retrieve infrastructure
resources metadata

VIM.1 Ability to handle
heterogeneous physical resooes

VIM.4 Resource abstraction

VIM.7 Translation of references
between logical anghysical
resource identifiers

The repositoryprovides specific fields for tracking
the resource allocation, relying on existing fields
OpensStack API (referring to CPU, disks, RAM u
etc.). Additionallythe repositoryprovides tracking
of resources currently noidentified by OpenStacl
(e.g. GPUs, NICs, DPDK librarggs.) via its EPA
agents.

The infrastructure repository stores all availabl
infrastructure related information from the
physical and virtualised resources within an NF
PoP and exposes thisformation through a unified
set of middleware APIs to the resource mapp
functional entity.

Data related todynamic infrastructure resource
allocations to VM instancesis stored in the
repositorye.g. number o#/CPUs allocateelc.

the
CF

Infrastructure metadata is stored n
infrastructure repository for example
instruction sets, NIC support for DPDK etc.

Heterogeneousnfrastructure informatiore.g. PCle
co-processor card, GPU et collected by EPA
agents running on the physil compute nodes it
the NFVPAP and stored inthe infrastructure
repositorydatabase

The infrastructure data stored inthe repository
database is structuikin a hierarchicagraph based
schema. This approach supports configura
abstraction of the resource details via tt
middleware API.

The infrastructure repository uses resource tags

1 hostname+type; physical resources.
1 OpenStack UUID for virtual resources
i OpenFlow ID for physical netwo

8|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

resources.

Specific event relateéhformation such askesize,

VIM.9 Control and Monitoring Create etc. is storefbr VMs

Hypervisor related information e.g. number of
available vCP$) available disk size ets collected
and stored in the infrastructure repository
database

VIM.20Query API and Monitoring

Hardware informationis collected by EPA agent:
running on the NFVI compute nodagad persisted
VIM.23Hardware Information to the infrastructure repositorydatabase
Collection Physical network resource information exposed
through the APl middleware layer v
h LISy 5 | eRESTAnkeifa0ed

Information regarding capacity of hardware
resourcese.g. disk size, RAM size etcpessisted
into the infrastructure repository database
Dynamic metrics such as CPU utilisatiwe out of
scope for task 3.2 anare addressed specificalby
task 4.4.

C.7Compute Domain Metrics

Hardwarespecific featuresare collected by EP.
agents running orthe NFVicompute nodes anc
persiged to the infrastructure repositorydatabase
Platform information is exposed via middlewa
APlIs.

H.7 Platform Features
Awareness/Exposure

2.1. Additional Requirements

As the infrastructure repository is a core subsystem of the Orchestration layer its
implementation has direct dependencies upon a number of WP3 and WP4 tasksas
previously described in deliverable 3-1 (see section 3.9). As outlined later in section
3.3 a prototype implementation of the infrastructure repository was developed to act
as a 0 c o mdwap tisedovihrth@® degpendent tasks to determine if the existing
requirements were appropriately fulfiled as well as to identify additional
requirements. The new requirements identified are outlined in Table 2.2 and were
incorporated into the final design phase of the infrastructure repository.

Table 2.2 Additional Infrastructure Repository Requirements

Requirement Infrastructure Repository Support

Resource informatioSHAL Ibe Resource information is stored in tr

IROL stored using a standard unique ~ Subsystem ~ database using
identifier. hLSy{udlo01Qa || L5®

_ _ The infrastructure repository provides
The infrastructureepositorySHALL ReEST PUT call in the middleware

IRop D€ able to storenformation about \yhich supports the insertion of WA
the PoP Ingress and Egress connection information into the
endpoints. middleware database.

9|Page

T-NOVA | Deliverable D3.2

IRO3

IRO4

IRO5

IRO6

IRO7

IRO8

The infrastructure repositor$HALL
support more than one NFNHoP
instance

The infrastructureepositorySHALL
provide a commotinterface to the
Orchestrator functional entities

The infrastructureepositorySHALL
minimise the overhead it places on
its data sources.

The infrastructureepositorySHALL
provide an interface which abstract:
its implementation

The infrastructureepositorySHALL
use a common authentication
mechanism for all API calls

The infrastructure repositor$HALL
storethe relationships between
resources

Infrastructure Resource Repository

An instance of the infrastructur
repository runs aeachNFVIPoP A single
point of &acess to all instances «
information repositories is provided vi
middleware layer to the Orchestrator.

The infrastructure repository provides
single interface through an Al
middleware layer for consumers of tr
information stored in the repository.

A listener service was developed whi
intercepts messages from the OpenSta
notification.info queueand updates the
resource repositoryia the EPA Controlle
with changes in the resource landsca
relating to NOVA, Neutron and Cinder.
¢t KS YARRf SgI NB
implementation is based on an Odg]
compliant specification which provide
full abstraction of the infrastructure
repository implementation.

All calls to the middleware layer APlIs ¢
authenticated using the TNova
Identity/Authorisation microservice
(GateKeeper)

The infrastructure repository database
implemented as graph databasevhichis
used to store the relationships betwee
resources in a hierarchical manner.

A total of 20 specific requirements were considered in the architectural design of the
infrastructure repository. The requirements listed in Tables 21 and 2-2 were also
used to evaluate the final repository implementation to ensure the available
functionalities and capabilities fully satisfied the identified requirements.

10|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

3. INFRASTRUCTUREREPOSITORYDESIGN

An iterative and incremental process was adopted in the design and development of
the repository subsystem [3]. This approach can be described asa combination of
both an iterative design method and an incremental build model for application
software development. The development lifecycle was composed of several iterations
in sequence. The initial iterations of the infrastructure repository were previously
described in Secton 3.7 of deliverable 3-1. The respective pros and cons of ech
identified design option were also presented. A key influence in the design of the
repository subsystems was the targeted ability to provide Enhanced Platform
Awareness (EPA) style information Todayds comput their mpiddyt f or ms
evolving technologies embedded in processors and chipsets, integrated on serve
boards, and installed in PCle slots, offer a rich set of capabilities which provide
significant performance benefits to specific workload types if appropriate ly utilised.
However cloud environment such as OpenStack, have not being taking full
advantages of these enhancements. This is a particular acute problem for NFV type
workloads whose performance can be significantly influenced by platform technology
features. Therefore offering EPA type information as part of the infrastructure
repository subsystem was an important design goal.

In this section a brief summary of the initial iterations is presented together with the

final design of the repository subsystem. The key learnings from thes early iterations

were used to inform the final design implementation of the repository subsystem

which is described in section 3.3 The final design comprises five functional entities,
namely: EPA agents, infrastructure repository database, listener services (EPA and
OpensStack) EPA Controller,middlewarelay er APl 8s and database.

3.1. Overview of Infrastructure Data Sources

The main sources of infrastructure information based on the software platforms

selected to implement the functional entities of the IVM layer (hamely the VIM and

NFVEPoP) are OpenStack and OpenDaylight The Kilo release of OpenStack and
Helium release of OpenDaylight were selected as the baseplatform releases for the
implementation of the T-NOVA VIM. From a hardware perspective stanérd X86 high
volume servers from Hewlett Packard (HP) were selected during the design and

testing phases of the repository subsystem.

As OpenStack is a modular platform, each module hasits own database to manage
the resources and information relevant to functions of that module. In the context of

the T-NOVA infrastructure repository, the databases of primary interest are the Nova
and Ne ut rDetailedinB®i@nation on the databasescan be found in Section 3.4
of deliverable 3-1.

3.1.1.NOVA Database

OpenStack NOVA database can be implemented using any SQLAIchemy-compatible
database. For TNOVA the default MySQL implementation is used. The nova-

1l1|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

conductor service is the only service that writes to the database. The other NOVA
compute services access the database through the novaconductor service The
NOVA database is relative complex, containingin excess of 100 tables. These tables
were examined to identify which ones contained infrastructure data that was
potentially useful to Orchestration layer related operations such as resource mapping
The compute_nodes table contains the most useful physical hosts information
including information on the hypervisor, the number of virtual CPUs, available/used
main memory (RAM), available/used disk space CPU details (such as vendor, model,
architecture, CPU flags, the number of cores, etc.).

Information on virtual machine instances is stored in the instancestable. An instance
dataset can include fixed IPs, floating IPs, volumes, virtual interfaces thatprovide
network access, an instance tpe, and an image.

3.1.2.Neutron Database

Neutron is the OpenStack component that enables network virtualisation and

provides ONet wor kiThe gervieesis lmasd 9re a model eofd virtual

networks, subnets and port abstractions to describe the networking resources. The
primary tables of interest are ports, routers, networks, subnetsand mil2_port_bindings
A subnet is a block of IP addresses that can be assigned to te VMs. A port is a virtual
switch connection point. Each VM can attach its virtual Network Interface Controller
(VNIC) to a network through a port. A port has a fixed IP address taken from the
address subset of the related subnet. Routers are local entities that work at Layer-3,
enabling packets routing between subnets, packets forwarding from internal to

external networking, providing Network Address Translation (NAT) services and
providing access instances from external networks through floating IPs.

3.1.3.0OpenDaylight

OpenDaylight provides a set of base functions which are supported through a set of
managers and components. The relevant ones from a network infrastructure
perspective are [4]:

1 Topology Manager & responsible for storing and handling the interconnection
configuration of managed network devices. It creates the root node in the
topology operational subtree during controller start -up and actively listens for
notifications that require necessary updates to the subtree, including all
discovered switches and their interconnections.

1 Switch Manager 0 provides network nodes (switches) and node connectors
(switch ports) details.

71 Inventory Manager & Maintains the concurrency of the inventory database by
querying and updating switch and port information managed by OpenDaylight .

The information stored by these managers is exposed via REST interfaceS'he REST
interfaces of interest from an infrastructure perspective are:

12|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

1 OpenFlow Nodes extends the top-level inventory node with OpenFlow (OF) -
specific features that allow retrieving and programming of OF -specific state,
such as ports, tables, flows, etc.

1 Base Topology- list of all topologies known to the controller
3.2. Enhanced Platform Awa reness

The purpose of EPA is to detect platform capabilities through the discovery, tracking,
and reporting of enhanced features in the CPU and PCle slots[5]. OpenStack Juno
and the recent Kilo release offer some EPA platform information, for example PCle
aware NUMA pinning. Future releases of OpenStack will further increase the richness
of the EPA data available. However within the context of the T-NOVA project
timelines current EPA support within OpenStack was considered tobe insufficient;
therefore in the design of the repository it was necessary to consider appropriate
functionality ensuring the availability rich platform information from the subsystem
database. It is also important to note that EPA extends beyond simply capturing
platform information. In order to use this infor mation in a cloud environment such as
OpenStack filtering and matching of available platforms with the specific capabilities
to an instance type requesting the desired features needs to be considered. Finally
scheduling and installing the instance onto the selected platform with the enabled
features is required. While these latter two requirements are out of scope for this task
they will be considered by other T-NOVA tasks such as 4.5 and 7.1

3.3. Repository Prototype Design

The initial prototype design focused on the use of existing OpenStack and
OpenDaylight APIs to expose NFVEPOP infrastructural information to the T -NOVA
Orchestration layer. This approach provided advantagesas t he AP Ges
standardised and concurrent information is always available. However there area
number of key disadvantages to this approach. OpenStack provides over one
hundred REST AR which increases the potential complexity of Orchestration
interactions, for example multiple APIs could be required to retrieve an information
set of interest. Also the infrastructure specific information available from the services
databases is limited in nature.

Three potential designs where initially identified each with respective pros and cons
(see section 3.3 deliverable3-1). The prototype design is shown in Figure 3.1. This
design addressed the issues relating to lack of platform information, i.e. enhanced
platform awareness by utilising agents. These agentsrunning on the NFV compute

nodes collect detailed platform information and persist the information to a central

database. Information stored in the database is exposedvia a REST APib consuming

components.

13|Page

avai

a |

T-NOVA | Deliverable D3.2

Virtualised Infrastructure Layer

Infrastructure Resource Repository

NOVA e
Compute 7
Discovery e

= X REST API
NOVAREST AP

openstack

DpenDaylight REST API
* OPEN

Neutron REST API T-NOVA

Orchestrator

2Jemalpplip |dY

uian|d ziw

Virtual Infrastructure
Management (VIM)

Figure 3-1 Prototype infrastructure repository architecture

The RESTAPI design of the repository prototype was based on the same structure as

the e

xisting OpenStack APJ] and from a user perspective they appear as a simple

extension of them. An example of a REST APtall is shown in Figure 32, which
returns a list of the PCle devices available from a specified host. The call takes the
form of:

GET /e|

pa/vl/ hosts/[host_id] Ipci_devices

10lie@IRILDO19:~S curl -X GET http://epa.t-nova.eu/epa/vi/hosts/2/pci_devices

"pci_devices": [

{

1,

This

"device_type": "Ethernet controller”,
"dpdk": true,

"dpdk_features": "unused:ixgbe drv:igb_uio ",
"host_id": 2,

"d” T,

"name": "Intel Corporation 82599ES 10-Gigabit SFI/SFP+ Network Connection (rev 01)",
"slot": "01:00.0",

"sriov_channels": 63

"device_type": "Ethernet controller”,
"dpdk": true,

"dpdk_features": "unused:ixgbe drv:igb_uio ",
"host_id": 2,

"id": 18,

"name": "Intel Corporation 82599ES 10-Gigabit SFI/SFP+ Network Connection (rev 01)",
"slot": "01:00.1",

"sriov_channels": 63

Figure 3-2 Sample of compute node PCle devices

prototype was implemented to be fully functional and was used as

a

6con

vehicled to elicit feedback and ddependehent i fy n:e
on the repository subsystem. For exanple requirements IR03 & IR05 were identified
as result of this process. Analysis of the implementation revealed that the

l4|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

implementation did not adequately support requirements IR02 and IR03. In a multi-
PoP scenariocomplex and ineffective interactions between the T-NOVA Orchestrator
and the various OpenStack and OpenDaylight instances would be required
furthermore, there was no provision for storing the ingress and egress network
endpoints o f t h e(i.e PMAR dosnections).

The prototype implementation supported perform ance evaluation of the
implemented functional requirements, and also helped to identify limitations in
available functionality.

The key learnings and the additional requirements identified in cooperation with the
dependent tasks on the infrastructure repository were used to inform the final design
of the subsystem which is outlined in the following section.

3.4. Final Resource Repository Subsystem Architecture

The key inputs into the final design of infrastructure repository wer e the prototype
implementation as outlined above and in deliverable 3-01, the requirements defined
in the WP2 deliverables and the new requirements (IR01 6 IR08)identified during the
prototyping phase. The final architecture design of the infrastructure repository
subsystem is shown in Figure 3-3. The functional components of the architecture are
as follows:

1 EPAAgents ¢ Python based software agent running on the compute nodes of
the NFVEPoOP. A central EPA ontroller service provides aggregation of data
from each agent and persists the data to a central database.

T Infrastructure Repository Database 8 Collected infrastructure data is stored
in a graph database where resources are represented as nodes with
associated properties. Edges between the nodes store information on the
relationship between nodes.

9 Listener Services- Two separate listener services are specified within the
architecture. The OpenStack Notification listener service is designed to
intercept messages from the OpenStack notification.info queue and to
provide notifications to the controller. The EPA agent listener service
intercepts EPA agent messages and notifies the controller of he messages in
order to trigger processing of received data files and to use the data to carry
out an update database action.

1 EPAController & The controller is responsible for updating the infrastructure
database based on information received from the listener services and data
files sent by the EPA agents One instance ofthe controller runs in each NVFF
PoP.The servtce runs on a compute node within the NFVI.

1 API Middleware Layer & Provides a common set of API callsthat can be used
by all the T-NOVA Orchestration layer functional entities.

The key changes fran the initial prototype implementation we re as follows:

1 The infrastructure repository database is implemented using a graph
database. The prototype implementation used a MySQL relational database.
The rational for this significant design change wasto support encoding of the

15|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

relationship between resources (see requrement IR08) and to arrange
resources into logical layers which represented the stack of physical, virtual
resources and workloads

1 Multi NFVI-PoPs are supported with a repository instance per PoP. All
repository instances are accessible through a common middleware API (see
requirement IR03).

1 The API middleware layer provides a common interface for all T-NOVA
Orchestrator function al entities (see requirement IR04)

1 The API middleware layer database provides support for storing information
on the PoP ingress and eress endpoints within the T-NOVA system (see
requirement IR02).

1 The API middleware layer is designed to be OCCI compliant which provides
abstraction from the underlying implementation (see requirement IR06)

1 An OpenStack listener service provides interception of infrastructure related
messages and updates to the infrastructure repository database (see
requirement IR05). This approach reduces the overhead on the OpenStack
service databases by eliminating the need to poll all the databases on a
recurring basis.

1 The API middleware layer uses the TINOVA Gatekeeper service for
authentication of API calls (see requirement IRQ@).

- \\ :
Serviceand VNF Resource (b!
T-NOVA Orchestrator [Manager] [Mapping] PoP Topology ;

Visualisation !

GatekeeperSecurity PoPIngress Cloud 3 !
Authentication ?‘t\j‘ and Eoress @ ervice and VNF
oy ndEg ° M '

3 Endpoints .1k anagers ;

Region: Geo Locationl
NFVI-PoP1

MNetwork Function Virtualisation Layer

Figure 3-3 Infrastructure Repository Sub System Architecture

16|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

3.4.1.1. eEnhanced Platform AwarenessAgent Design

As previously outlined in deliverable 3-1, analysis of the NOVA database revealed
that limited compute platform information was stored in the Juno OpenStack release.

For example a significant gap was the absence of information relating to the available
PCle devices such as network cards for a given compute platform. In order to
improve the richness of the available platform information beyond what was

accessible in the NOVA database; direct interrogation of the NFVI resources was
required in order to fulfil requirements VIM23 and H7.

Two important considerations in the design of the component were scalability and
support for enhanced platform awareness. In order to support scalability, a per
compute node agent based approach was selected as shown inFigure 3-4. Secondly
the agent was designed to provide complete platform information at installation
time. Thirdly a software agent approach was selected to meet some key designgoals.
These goals were as follows:

1 Runs and collects host informatio n upon host start-up.
1 Does not require interaction with a user.
1 Invokes necessary support tasks such as communicatiorfunctions.

For an operational perspective the design of the agent includes the following
assumptions:

1 An agent runs each time the node is started or rebooted.
1 The EPA agent image is included in the VM images used by the TNOVA VIM.

1 The configuration of NFVI nodes is considered to be stable. As new nodes are
added, an EPA uns at start-up capturing the platform details of the new
node. Hardware upgrades are considered to require a compute reboot which
will allow the agent to capture hardware upgrades or changes.

Another design consideration was execution flexibility. For the purposes of the
current T-NOVA implementation, agent execution is bounded to the compute node
boot cycle. However in environments where low frequency updates are insufficient,
the agents can be configured to run on scheduled basis as a system cron job.In this
way the concurrency of the compute node information can be maintained for highly
dynamic environments.

In order to address EPA needsthe information collected from each compute node in

the NFVI PoP should have high granularity. Key types of required information
included NUMA nodes, PCle devices such as network cards and coprocessorstc. The
design of the agent therefore needs to enable the capture of both detailed platform

information and the hierarchical relationship between the components. Additionally
the design of the agents needs to accommodate both the identification of resources

and in some cases the configuration details of a device, e.g. the number of SRIOV
channels allocated on a NIC andthe number of free channels available. Therdore
implementing a single mechanism to retrieve all the information of interest is
challenging. As a result a framework based approach where utilities, scripts and

17|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

commands are used collectivdy under the control umbrella of an agent to retrieve
the necessary information was adopted.

All information generated by the agents should be persisted to a file format which
can be sent to a common aggregation service in an asynchronous manner. Design
details of the aggregation service are outlined in section 3.4.1.3.

- - - - . - - . . G - . G . =y

Il — \\
[o—— [
| o) bl]
I et n—— (FE | 1] I
| |
, —— :
| (G) |
| Infrastructure EPA Controller 1
| Repository DB F_J :
| — |
| |
I |
— .
: r—s EPA Listener :
\ s Service !
\\ R H; -
EPA EPA a EPA
Agent Agent Agent
Compute Node Compute Node Compute Node

Figure 3-4 High Level EPA Agent Architecture
3.4.1.2. Infrastructure Repository Database Design

The previous prototype implementation used a standard MySQL relational database
for the storage of re source information. However in order to encode the relationship
between the resources and associated parameters(see IR08)in an efficient manner a
graph database approach was adopted for the final database design. Graph
databases are NoSQL(Not only SQL) database systems which commonly use a
directed acyclic graph (DAG) to store data relationships SQL based databases store
and retrieve information stored in tabular relationships while graph databases use a
graph data model for storage and processing of data. Graph databases bring
application specific advantages such as simpler design and horizontal scaling. NoSQL
databases are finding popularity for big data and real-time web applications. From
the perspective of the infrastructure repository database design the rational for the
use of a graph database approach is thatit allows you to find interconnected data
much faster and in a more scalable manner thatin a relational data model [6]. For
example traversal type queries which would be commonly used for identifying

18|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

specific resource types in server nodes run up to 10 times faster with a graph
database in comparison to SQL[7].

A graph database stores nformation using vertices/nodes and edges/relations. A
graph structure supports:

1 Represening data in a natural way, without some of the distortions of the
relational data model

1 Apply various types of graph algorithms on these structures. This will help
service mapping algorithm, providing data in a way that is already optimised
for its computation. The graph structure permits the navigation of nodes
following explicit pointers that connect the nodes and to identify the paths
between nodes.

From a database design perspective, using a graph database follows a different
design approach in comparison to relational database designs. The initial focus is on
identifying the nodes within the graph. The NFVI can bedecomposed into either
physical or virtual resources which can be mapped directly to a node structure. The
relationships of virtual-virtual, physicalphysical and virtual-physical are captured in
the relevant connections between the resources. Virtual resources have an implicit
dependency on physical resaurces, i.e. a virtual resource cannot exist without a
physical host. Therefore in a graph construct, virtual resources must at some point in
the graph be connected to a physical resource.

The use of graphs also mapsconveniently to the hierarchical structure of compute,
storage and network elements within the NFVI. Two approaches can be adopted in
design of the graphs, namely a top down or a bottom up approach. A top down
approach was adopted given that a server is the key autonomous unit within the
NFVI. A server can thenbe broken down into its constituent components , while
maintaining the relationship among components using directed acyclic graphs. For
example in Figure 3-5 a simple graph for a server is shown where the server has two
sockets, ead socket has a CPU and each CPU hasultiple cores.

19|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

Figure 3-5 Simple server resource graph.

A similar process is adopted for virtual resources which have a similar hierarchical
construct.

As shown in Figure 3-5, nodes in a graph database have explicit relationships

between themselves. The relationship indicates the directed, semantically relevant

connections, e . g . oOhas ao oruns onboé 0 o tentitiese Awor k6 et
relationship comprises of a direction (indicated by the direction of the arrow), a type,

a start node, and an end node.

3.4.1.3. Listener Services Design

Listener services areprocesses that receive or intercept specific messages of interest
and carry out some predefined action on the message, such as forwarding the
message to another service or location. In order to ensure flexibility, the design of a
listener service needs to utilise a configuration file in order to adapt the behaviour of
the service to evolving system designs and upgrades. In the design of the repository
subsystem the need for two listener services was identified. The listener services
required in the design are as follows:

1 EPA Agent listener service
1 OpenStack Message Queue listener service

The function of the EPA agent listener service is to receive messages with platform
information updates from the EPA agents running on the compute nodes. One
listener service is required per NFVI. All EPAagents running in the NFVI need to be
able to commu nicate with the listener service.

The OpenStacklistener serviceis designed to intercept messages from the OpenStack
notification.info queue and to notify the EPA Controller that a change in the

20|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

infrastructure landscape of the NFVI has occurred which must be reflected in the

infrastructure repository database. The design of the listener service plays a central
role in maintaining the concurrency of the information stor ed in the resource
repository data. It is designed in a flexible and scalable manner by implementing

handlers for each specific category of message (e.g. compute.*, volume.* etc.) relating
to resource updates such as the creation of a new VM etc.

3.4.1.4. EPA Controller Design

The goal of the controller component is to provide a centralised actuation point for
listener service notifications as shown in Figure 36. A controller resides on each PoP
in the T-NOVA system.

The main design goals of the controller are:

1 Persistenceand consistency of infrastructure information

1 Requires nouser interaction

9 Provides asynchronous response to listener notifications to support
scalability

1 Processs data contained in different file formats which are published by the

EPA agents.
ﬁ EPA Agent

|
h
od |
—

<xmlf> Infrastructure Data Files

L.

9) \
EPA Agent Listener _{%I 5
@ ~m—

Message notifications

OpenStack Agent Listener

Figure 3-6 Controller system overview

To ensure persistenceand consistency, the controller is responsible for managing the
connection to the infrastructure repository database. The controller is al®
responsible for initialising the infrastructure repository database at start-up before
starting the listener services so that any update to the database committed by the
listener serviceswill be consistent with current state of the infrastructure landscape.
The controller also has responsibility for processing files containing infrastructure
information received from the EPA agentswith varying formats. After starting the
Controller, it has responsibility for orchestrating in an autonomous manner its
components without the need for user interaction.

21|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

3.4.1.5. Middleware APILayerDesign

The middleware layer is the infrastructure repository subsystem component that
provides the Northbound RESTAPI to the functional compo nents of the T-NOVA
Orchestration layer such as the Orchestrator manager, resource mapping module etc
Its design is primarily driven by analysis of the requirements outlined in section 2.

The middleware layer needs to provide a common interface to all the PoP level
databases within the T-NOVA systemas shown in Figure 3 7. From the perspective of
a component using the interface the location of the data and the underlying

complexity in forming the query response is abstracted as per requirement VIM4 (see
Table 2-1). In order to support common access to all PoPs, the relevant service
endpoints need to be stored within the middleware layer. Secondly the middleware
layer needs to store information regarding the network ingress and egress endpoints

of the PoPs comprising the T-NOVA system and parametric datarelating to the links
e.g. available bandwidth available. Therefore the inclusbn of a database was
considered a necessary element in the design.Additional API calls which support the
creation of new POP entries or updating existing entries are required as per

requirement IR02.
Resou

Mapping
Service and VNF
Manager PoP Topology
Visualisation
Gatekeeper Security #4 & PoPIngress ®
Authentication ¢, andEgress ®

Endpoints
PUT/POST/DELETE

T-NOVA Orchestrator

PoP DB

NFVI PoP Infrastructure Repositories

Figure 3-7 Middleware layer design

The primary function of the middleware APIs is to support retrieval of information

from the repository databases located at each NFVAPoP. The interface does not
support other actions on the PoP level resource repository databases such as
inserting, updating or deleting information in the NFVIFPOP level databases. To be
compliant with the design decisions of Task 31 a REST type approach to the design
of the interfaces was required. However additional requirements in the interface
design were also considered. The middleware API also provides an agnostic
repository implementation interface to the dependent Orchestrator components as

22|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

per requirement IR06. The design of the interfaces therefore considered approaches
such as OCCI tofulfil this requirement.

Another requirement that the design considered was exposing hardware capabilities
collected at PoP level by the agents as per requirement H.7 (see table 21). This
requirement necessitates the discovely of the features and functionality provided by
resources ompute, accelerators, storage and networking) and exposing this
information to the Orchestration layer.

Finally the middleware design needed to support the common service authentication
mechanism (Gatekeeper) used by the T-NOVA Orchestration layer. All API calls
received by the middleware layer must be authenticated before execution.

23|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

4. INFRASTRUCTUREREPOSITORYSUB-SYSTEM
IMPLEMENTATION

This section describes the implemertation details of the infrastructure repository sub-
system and its functional components. The key interactions between the EPA Agent,
listener services (OpenStack and EPA Agent), EPA Controller, repository database and
API middleware layercomponents are shown in Figure 4-1. The key information flows
between components and the other T-NOVA Orchestrator subsystens such as the
mapping service are also shown. The components represented as grey blocks are
open source software components used to build the VIM at each T-NOVA NFVIPoP.
The controller is designed to use these components for retrieving virtual resources
information. The repository sub-system components are presented as blue blocks
EPA @ents running on each compute node of the NFVI reports hardware data to the
controller via a RabbitMQ broker'. The controller, which is subscribed to messages of
interest including those from the EPA agents, intercepts the messages via the
dedicated listener services and uses the messages to trigger updates to the
repository database via the EPA Controller The dependent Orchestrator subsystem
components interact with the repository via the middleware API layer. In particular
the T-NOVA Orchestration layer retrieves infrastructure information to support both
deployment and management decisions with respect to either new or existing
network services The T-NOVA Orchestration layer can also use the middleware APls
to support storage of NFVFPoOP ingress and egress engoint information via the
middleware layer graph database. $ecific API calls are provided to support all
required actions. New PoPs with their WAN link information can be added; existing
PoP information relating to connection attributes can be either updated or deleted. A
description of connections between the infrastructure sub-system components is
provided in Table 4-1.

. - 10 :
~ Vo EPADB PoPs DB
i 7 ; o =
n ~ '\l’ \,’

Iy

e ==
! EPA Controller

2 | WaRabbit >

19AET 21BM3|PPIIN

8
6
OpenStack Listener
EPA Agent Listener
4 3

EPA Agent

ViM Repository Subsystem . Orchestration Layer

Figure 4-1 Infr astructure Repository & Key information flows

! https:/iwww.rabbitma.com/

24|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

Table 4.1 EPA Data Flows

Description

1 OpenStack services storeinformation in their respective
MySQL DBs

2 | OpenSack services send notification messages to the
RabbitMQ broker containing virtual resources updates

3 EPA Agent sends hardware features data to the
Controller

4 | EPA Agent sends a notification to the RabbitMQ broker
when new hardware data is collected.

5 Listener Services intercept message of interest from EPA
agents or OpenStack updates

6 | EPA Controller consumes notifications from listener
services to trigger resource repository DB updates

7 | EPA Controller retrieves virtual resources informdion by
guerying OpenStack MySQL services DBs

8 EPA Controller persists infrastructure information to the
resource repository DB

9 Middleware retrieves network topology information from
OpenDaylight Controller.

10 Middleware retrieves infrastructure information from the
EPA DB based on the API call used

11 Middleware stores and retrieve PoPsinformation using
the PoPs DB

12 T-NOVA Orchestrator retrieves infrastructure information
and stores PoP ard connections information using the
Middleware API

Each component is implemented as a Python module and configured using
standalone configuration file s. A detailed description of each component is provided
in the following sub sections.

4.1. Enhanced Platform Awareness Agent Implementation

An EPA @ent runs on each compute node within the NFVI-PoP. The agent is
responsible for collecting information relating to the hardware features of the
physical compute node hosts, and sending that inform ation to the EPA Controller
which persists the received information to the repository database. The majority of
the compute node information is collected using the open source hardware locality
software package [8]. This package provides an abstraction of the hierarchical
topol ogy of a ¢ omputlegathesdaidus sysslemattributeg likd ur e

25|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

cache and memory information, as well as information regarding I/O devices such as
network interfaces, GPUsetc. (see Figure 42). The tool supports most of the modern
operating systems ensuringgood interoperability.

<topology>
<object type="Machine" os_index="0">
<info name ="DMIProductName" value="ProLiant DL380 Gen9"/>
<info name="DMIProductVersion" value=""/>
<info name="DMIChassisVendor" value="HP"/>
<info name="DMIChassisType" value="23"/>
<info name="DMISysVendor" value="HP"/>
<info name="Backend" va lue="Linux"/>
<info name="OSName" value="Linux"/>
<info name="OSRelease" value="3.13.0 -44-generic"/>
<info name="0OSVersion" value="#73 -Ubuntu SMP Tue Dec 16 00:22:43 UTC 2014"/>
<info name="Architecture" value="x86_64"/>
<distances nbob js="2" relative_depth="1" latency_base="10.000000">
<latency value="1.000000"/>
<latency value="2.100000"/>
<latency value="2.100000"/>
<latency value="1.000000"/>
</distances>
<object type=" NUMANOdJ=®233609967876"> me mor y
<page_type size="4096" count="8205556"/>
<page_type size="2097152" count="0"/>
<object type="Socket">
<info name="CPUModel" value="Intel(R) Xeon(R) CPU E5 -2620v3 @ 2.40GHz"/>
</object>
<object type="Bridge" 0s_index="0" bridge_type="0 -1" depth="0"
bridge_pci="0000:[00 -13]">
<info name="PClIVendor" value="Intel Corporation"/>
<info name="PClIDevice" value="Wellsburg PCI Express Root Port #5"/>
<object type="PCID ev" name = "Broadcom Corporation NetXtreme BCM5719
Gigabit Ethernet PCle" pci_busid="0000:02:00.0">
<info name="PCIVendor" value="Broadcom Corporation"/>
<info name="PClIDevice" value="NetXtreme BCM5719 Gigabit Ethernet PCle"/>
<object type="OSDeVv" name="em1" osdev_type="2">
<info name="Address" value="c4:34:6b:b8:52:d0"/>
</object>

</object>
</object>

</object>
</topology>

Figure 4-2 Hardware locality data extract

Additional cpu specific information is collected (for Linux machines only) using the
output of the command:

cat /proc/cpuinfo

26|Page

T-NOVA | Deliverable D3.2

Infrastructure Resource Repository

The output generated and collected by th e EPAagent is shown in Figure 4-3.

processor
vendor_id
cpu family
model

model name
stepping
microcode
cpu MHz
cache size
physical id
siblings : 28
coreid : 14
Cpu cores
apicid : 29
initial apicid
fpu
fpu_exception
cpuid level
wp

flags

141

: Genuinelntel

16

163

. Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz
12

: Ox2b

: 1200.976

: 35840 KB

:0

114

129

:yes

:yes

115

:yes

: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov

pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpelgb rdtscp
Im con stant_tsc arch_perfmon pebs bts rep _good nopl xtopology nonstop_tsc
aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3

fma c¢x16 xtpr
tsc_deadline_timer aes xsave avx f16c¢ rdrand lah

pdcm pcid dca sse4 1 sse4 2 x2apic movbe popcnt
f Im abm ida arat epb xsaveopt

pin pts dtherm tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmil avx2
smep bmi2 erms invpcid

bogomips
clflush size

address sizes

: 5194.05
164
cache_alignment

: 46 bits physical, 48 bits virtual

164

power management:

Figure 4-3 Output of CPUInfo command

The agent is also designed to detect the presence of DPDK compatibleNICs using a
script from the DPDK library (dpdk_nic_bind.py). The output of this script is shown in

Figure 4-4.

PCI addr
0000:05:00.1
0000:05:00.0

Figure 4-4 Output of DPDK script

27|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

The agent also identifies the presence of SRIOV capable NICs and the number of
allocated and unallocated virtual functions? for each SRIOV NIC as shown in Figure
4-5. The NIC in this exampleis dual channel NIC which can support up to 63 virtual
functions or channels. However one channel has been configured to support only 25
virtual functions while the second channel is configured to support no virtual
functions.

PCl addr numvfs totvfs
0000:05:00.1 25 63
0000:05:00.0 0 63

Figure 4-5 Output of SR -10V script showing total number of SR -IOV NIC virtual
functions

SRIOV capabilities are discovered using acustom Python script. First the script
parses the output of the list PCI devices command (Ispc) and extracts (if any) the pci
address of each SRIOV device. Then the script extracts additional information about
the SRIOV card (number of available/allocated SRIOV virtual functions) using the
following two commands:

cat /sys/bus/pci/devices/0000 \: + pci_address + /sriov_numvfs

cat /sys/bus/pci/devices/0000 \: + pci_address + /sriov_totalvfs

Information collected by hwloc [9] is written to an XML file while information from
cpuinfo, dpdk_nic_bind.py andthe SRIQV script are written to text files. All files are
sent to the EPA controller using a secure shell (ssh) connection. When a file is sent to
the controller the agent also sends a message to the controller using RabbitMQ to
notify the controller via the EPA listener servicea new file has been sent so the
controller can parse the file and update the infrastructure repository database.
Notifications are sentto the RabbitMQ brokerof t he VI Mds OpusigSt ack i n
Pike®. Pika is aPython implementation of the AMQP 0-9-1 protocol. The execution life
cycle of the agent is shown in Figure 4-6.

2 virtual Functions (VFs) are simple PCle functions that contain all the resources necessarfor
I/O but have minimal set of configuration resources.
® https://pika.readthedocs.org/en/0.9.14/

28|Page

https://pika.readthedocs.org/en/0.9.14/

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

List topology command Agent
output Parse hwloc output

DPDK lib GESHE
Parse DPDK script Write DPDK infoto txt file
output

Agent

Parse input

Write HW Infoto xml file

dpdk_nic_bind.pyscript
output

cat/proc/cpuinfo

Write CPU infoto txt file
command output

Agent

Parse inputto discover
pci addresses of SR-10V
devices (if any)

|spci command output

Read 5R-10V nics

rties t
PRRSREE i Write SR-10V infoto txt file
{sriov_numvfs and Process input
sriov_totwfs)

Send files to controller

Send notification to the
RabbitMQ broker

Finish

Figure 4-6 EPA Agent execution flow diagram

When the controller receives a message notification via the EPA listener service from
an EPA agent, it parses the received files and updates the information stored in the
infrastructure repository database.

4.2. Infrastructure Repository Database Implementation

The repository database is implemented as a graph databaseusing Neo4j*. The 2.1.7
community version of the database was used for implementation purposes. Neo4j is
an ACID compliant database (Atomicity , Consistency, Isolation , and Durability). All
changes in the database must be performed in a transaction, which checks for data
validity before storing. For example it will check relationship consistency ensuring
that the specified start and end nodes exist. The isolation property ensures that
parallel transactions do not influence each other. The query language used to retrieve
data from the database is called Cypher. It is a declarative graph query language that
allows for expressive querying of the graph database.

Letds assume t ha tatabhase informationrrelagirg doi ah @penStack
VM stack is stored. The stack has aUUID=7fe39371-1379-4162-9deb-e904c4f2dc43,

* http://neo4j.com

29|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

composed by one VM and a virtual network and you want to know on which host the
VM has been deployed. Using the OpenStack API, this query would be comgicated,
requiring interacting wi t h mul ti pl e API &6s from different

repository database with the following query the required information can be
retrieved:

Match stack -[r]->resources -[s]->hypervisor -[u]->host where

stack.openstack uuid ='7fe39371-1379-4162-9deb -e904c4f2dc43" return stack,
resources, hypervisor , host

The query returns the following graph:

painosal SBY
&

d_oem‘jav
w

o sunt

Figure 4-7 Cypher Query result
The graph, shown in Figure4-7, is composed by:

1 Nodes that represent the virtual resources (violet nodes). These virtual
resources comprise a stack which is connected to a virtual network and to a
VM on that network. The VM is connected to the network through a neutron
port that represents its tap interface.

I The hypervisor where the VM has been deployed (green nodes).

1 The physical host, having a hostname called computel, where the hypervisor
is running (blue nodes).

The controller and the middleware layer APIls access the infrastructure repository
database using Py2ned which is a client library that enables Python applications to
work with Neo4j. In particular the controller and middleware share a Python module

® http://py2neo.org/2.0/

30|Page

S

T-NOVA | Deliverable D3.2

Infrastructure Resource Repository

called neo4j_resources that wrags the Py2neo API to perform required actions before
storing or updating new nodes or relationships in the database. All resources in the
repository database are indexed using its UUID and label (node category) to boost

performance.

The methods implemented are outlined in Table 4-2. Note: A graph_db is an instance

of the Graph class fromthe py2neo library.

Table 4.2 Methods for Repository Database updates

Method Description ‘

create_indexgraph_db, label)

Create an index in the databasefor the given
label.

add_node(graph_db, index, timestamp,
properties =None)

Add a new node with the given index, the
given timestamp and optionally the given
properties.

update_node(graph_db, index, timestamp,
properties =None)

Update a node having the given index, with
the new timestamps and optionally
properties

delete_node(graph_db, index, node =None)

Delete the node with the given index. If you

have already an instance pointing to the

node, you can pass it. In this case index will
be ignored.

add_edge(graph_db, start_node, end_node,
timestamp, label , properties= None)

Add a relation between the start node and
the end node, using the given label and
timestamp and optionally properties.

delete_edge(graph_db, start_node,
end_node)

Delete the relation between start_node and
end_node

update_edge(graph_db , start_node,
end_node, timestamp, label,
properties =None)

Update a relation between the start node and
the end node, using the given label and
timestamp and optionally properties.

get_edges_by nodégraph_db, index,
node= None)

Retrieve a list of relations for the given node,
specified by index or by an instance of the
node itself.

get_neighbours(graph_db, index,
node= None)

Retrieve a list of nodes linked to the given
node both with an ingress or egress relation.
The node can be specified by index or by an
instance of the node itself.

remove_neighbours(graph_db , index,
node=None , neighbour_type= None)

Delete nodes linked to the given node both
with an ingress or egress relationship. The
node can be specified by index or by an
instance of the node itself.

get node_ by indeXgraph_db, index)

Retrieve a node given its index

get_node_by_ property(graph_db, label,
property _key, property value)

Retrieve the first node with the given
property and label.

3l1|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

get_edge(graph_db, start_node, end_node) Retrieve the first relation between start and
end node.

remove_nodes_by propertfgraph_db, label, Delete all nodes having the given label and
property_key, property_value) property.

All functions can be called multiple times on the same data and will return the same
output. In this way the design of components that use the library has been simplified.

With a graph database each resource is characterised by multiple links with other
resources. For example when auser deploys a new stack composed by two VMs, this
will be represented in the database as a Stack node conrected to two VMs where
each VM is connected to a port that in turn is connected to a virtual network. The two
VMs will also be connected to the hypervisor where the VMs are running on. Each
hypervisor is connected to a physical machine. If a VM requiring an SR IOV NIC is
deployed, the related port will be connected to the physical network card that
supports SRIOV.

In order to support consistency between the resource references used in the
infrastructure repository and those used by the metric monitoring system being
developed by the task 4.4 in WP4 the following conventions wer e adopted.

1 Physicalresources are identified by a combination of OpenStack hostname +
kind (see Table 4.3).

T Virtual resources are identified by OpenStack UUID.
1 Physical network resource by OpenFlowiD.

Use of these conventions ensuresthat the Orchestration layer can correlate metrics to
the corresponding resources in the repository and vice versa.

Additionally, to standardise the naming convention of the T-NOVA PoPs the
following convention was adopted.

T Country Code - Two letter code as per 1O 3166
(http://www.iso.org/iso/home/standards/country _codes.htm).
1 City location code as per UN/LOCODE

(http:// www.unece.org/cefact/locode/service/location.html) and a 4 digit
datacentre number (this could be increased if it makes sense).

An example of the convention applied to the Intel data centre in Leixlip, Ireland is:
e.g. IELEX0001

The rational for this standardisation was to have short but meaningful names in order
to facilitate shorter response strings to resource GET API calls where the source PoP is
included in the response.

4.3. Listener Service s Implementation

To ensure data concurrency in the repository database, updates by the EPA @ntroller
are initiated via the Events Listener Servicanodule. This module is connected to the
RabbitMQ broker and consumes messages from th

32|Page

http://www.iso.org/iso/home/standards/country_codes.htm
http://www.unece.org/cefact/locode/service/location.html

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

gueue. An Event in OpenStack represents the state of an objet in an OpenStack
service (such as an Instance in Nova, or an Image in Glance) at a point in time when
something of interest has occurred. In general, Events let you know when something
has changed about an object in an OpenStack system, such as the resing of an
instance, orthe creation of an image. Events are primarily created via the notifications
system in OpenStack. OpenStack servicessuch as Nova, Glance, Neutron, etcsend
notifications in a JSON format to the message queue when a notable action is taken
by that system. The Events Listenerconsumes these notifications from the message
gqueue, and processs them. To enable the notifications service in OpenStack the
service configuration file must be updated as shown in Figure 4-8.

File: nova.conf (controller and computes)

[DEFAULT]

default_notification_level=INFO

notification_topics=notifications
notification_driver=nova.openstack.common.notifier.rpc_notifier
notify_on_state_change = vm_and_task_state
instance_usage_audit=True

File: cinder.conf (c ontroller)

[DEFAULT]

default_notification_level=INFO

notification_topics=notifications
notification_driver=cinder.openstack.common.natifier.rpc_notifier

File: glance -api.conf (controller)

[DEFAULT]

default_notification_level=INFO

notification_topics=notifi cations
notification_driver=glance.openstack.common.notifier.rpc_notifier
File: heat.conf (controller)

[DEFAULT]

default_notification_level=INFO
notification_topics=natifications
notification_driver=heat.openstack.common.natifier.rpc_notifier
File: neutron.conf (controller)

[DEFAULT]

default_notification_level=INFO
notification_topics=notifications

notification_driver =
neutron.openstack.common.notifier.rpc_notifier

Figure 4-8 OpenStack Notification Configurations

After adding these configurations, all the OpenStack services must be rebooted to
start producing notifications. All the notifications have a field called event_type which
is based on a composite string with a dot del imiter defining what event has occurred.
For example the notifications produced
will have event_type compute.instance.* €.g. compute.instance.create.end,
compute.instance.delete.end, compute.instance.update etc)

33|Page

by

No vV :

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

The general architecture of the OpenStack Events Listener is shown in Figure 49. A
component called Notifications consumer is responsible for:

9 Creating the connection to the RabbitMQ Broker.

1 Registering itself as a consumer for the messages in thenotification queue .

9 Providing registration functionalities to permit the handlers to register
themselves for a specific event type patterns.

OpenStack notifications

Events Listener

Notifications
consumer

|

Router Port Floating|P
Handler Handler Handler

Nova Volume Snapshot Heat Network
Handler Handler Handler Handler Handler

compute.instance.* volume.* snapshot.* orchestration.* network.* router.* port.* floatingip.*

Figure 4-9 Events Listener Architecture

After the handler is registered for a specific pattern, it starts to receive the desired
events. A new derator® [10] called register_handlerwas also defined. The decorator
takes the function, stores a reference to the function in a hash, using events asthe
key of the hash. The reference isthen used whenever an event occurs connected to
the key against which the function reference was stored. For example aNova event
handler would have the following format :

CREATE_EVENF |
0O'compute.instance.create.

]
UPDATE_Events= [

‘compute.instance.resize.revert.end’,
‘compute.instance.finish_resize.end’,
‘compute.instance.rebuild.end’,
‘compute.instance.update’,

‘compute.instance.exists'

® 3 decorator is the name used for a software design patterrDecorators dynamically alter the
functionality of a function, method, or class without having to directly use subclasses or change
the source code of the function being decorated

34|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

DELETE_EVENEY
‘compute.instance.delete.end’

]

Class NovaHandler (OpenStackHandler):

@register_handler(UPDATES EVENTS)
def handle_instance update (self, graph_db, body):

Processing VMs update events

@register_handler(CREATE_EVENTYS)
def handle_instance_create (self, graph_db, body):

Processing VMs create events

@register_handler(DELETE_EVENTS)
def handle_instance _delete (self, graph_db, body):

Processing VMs delete events

The common mechanisms for processing an event are:

1 Querying OpenStack Service databaseto retrieve additional information
about the resource that generated the event. This functionality was
implemented using MySQL Connector/Python’ which an open source API that
is compliant with the Python Database API Specification v2.0.It is written in
pure Python and does not have any dependencies except for the Python
Standard Library.

1 Update the repository database.

The EPA Agent Listener ismplemented in a similar manner to the OpenStack listener
service. The EPA agent listener isiowever specifically subscribed to the agents.info
gueue. This queue is configured in the RabbitMQ broker to specifically handle
messages sent by the EPA agents. The queue is created during the installation
process of EPA agent listener. The listener when subscribed to the queuewaits for
hardware information about new compute nodes added to the PoP or any updates
relating existing nodes in the form of hardware changes or upgrades. The messages
sent by the EPA Agents have an event type field that can have valuesagent.new or
agent.update The message also has a field where the path to the files sent bythe
agent are to the EPA Controller are stored. Once the EPA Agent Listener receives a
new message, it informs the EPA Controller that new files require processing and
provides the EPA Controller with the location of the file s that must be processed. The
specifics of how the EPA Controller service is implemented are outlined in the next
section.

4.4. EPAController Service Implementation

The EPA controller ®rvice manages and orchestrates the infrastructure repository
database, EPA gent and OpenStack notification listeners. At start-up the controller is
responsible for initialising the infrastructure repository database by removing all

" http://dev.mysgql.com/doc/connector -python/en/

3B|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

previously present nodes and relationship entries (if any). The controller then
populates the database by extracting data from the OpenStack service databases.
When this step is completed the database contains all nodes and relations that
represent the current OpenStack view of the datacentre, i.e. a screenshot of the
current infrastructure. This establishes a ground truth state which can then be
updated with new data produced by the two listeners (EPAagent and OpenStack).
The set of operations performed in the initialisation of the EPA databaseare shown in
Figure 4-9. Once the EPA databaseis initialised, the controller starts the Agent
notifi cation listeners.

Controller reads

params to connect to
OpenStack DBs and EPA
DB from configfile

- e Delete all nodes and
OpenStack DBs relations from EPA DB

Controller collects
Quering Keystone DB OpenStack controller
services

Quering Neutron DB

R Controller collects
Neutron poris
Controller collects

Quering Neutron DB .
Meutron FloatinglPs

Quering Neutron DB

Controller collects % Push Nodes and

n] ing Cinder DB
WEring Linder Cinder Volume Services 3 relations to EPA DB

Controller collects

Quering Cinder DB .
Cinder Volumes

Controller collects
Cinder Snapshots

Quering Cinder DB

Controller collects

Quering Nova DB
i Nova Hypervisors

Controller collects
Nova Virtual Machines

Quering Nova DB

Controller collects

Quering Heat DB
luering Hea Heat Stacks

*
T

e - Finish

Figure 4-9 EPA database initiali sation flow diagram

When a new Agent notification is received, the controller takes the following actions:
1. Collects the files sent by the EPAAgent

2. Delete all nodes and relations from the database related to the hardware
resources of the host that produced the notification .

36|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

3. Parses the HW locality file and converts the xml structure to a graph structure
(for example see Figure 53).

4. Updates the Process Unit nodes with information contained in the CPU
information file.

5. Updates the OS Network device with information contained in the DPDK
information file.

6. Updates the OS Network device with information contained in the SRIOV
information file.

At the end of that process, the infrastructure repository database contains all the

hardware information with respect to the host that sent the notification . Step 2
ensures that if a host sends multiple notification s, the database will not contain

duplicate nodes for resources belonging to the same host. After starting the EPA
Agent notification listener, the Controller starts the OpenStack Notification listener

which keeps the information stored in the repository database up to date, using the
mechanism outlined in Section 4.3

4.5. Middleware API Layer Implementation

A key requirement for the infrastructure r epository is to create a unified view of the
T-Nova infrastructure environment composed by multiple Points of Presence (PoPs).
Each PoPis a datacentre managed by a VIM based on OpenSack for compute and
storage resources and OpenDaylight for the physical network topology. All
infrastructure informatio n is stored in the repository database except for the network
topology which is retrieved directly from OpenDaylight via its RESTAPB.sT-Nova
uses a sharing-nothing approach, which means that the OpenStack and
OpenDaylight instances are completely isolated. To follow this approach, each PoP
has its own infrastructure database, where the infrastructure information for that PoP
is stored (at PoP level). To achievea unified view of the infrastructure information
among multiples PoPs, theinfrastructure repository implements a middleware layer.

The main responsibilities of the middleware layer are:

1 Defining a common view for all information sources (OpenStack, EPA Agents
and OpenDaylight);

9 Dispatching user requests to the required PoP.

The middleware layer also has a database (at the middleware layer) where
information relating to the PoPsin the T-NOVA system and the network links
between them are stored.

Each PoPentry in the middleware layer database contains the following information :

 Name

ID

EPA databaseURL
OpenDaylight URL
OpenDaylight username
OpenDaylight password

= =4 =4 -4 =4

37|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

1 Longitude
M Latitude

Each PoPentry also contains the URLs of the two sources of information at the PoP
level (resource repository database URL and OpenDaylight UR[.

The middleware layer exposes the API calls to managethe PoPs (Crate, Retrieve,
Update, Delete). When a request is sent to the middleware, the ID of the PoP that the
user wants to access must be specified. In this way the middlewarelayer can retrieve
the URLs and query the appropriate PoP level information sources.

The consistency of the OpenStack and EPA agentinformation contained in the
infrastructure database is maintained using the listener services and EPA controller
previously described. This approach cannot be used for physical network information,
as OpenDaylight does not provide an equivalent messaging mechanism. For this
reason when a T-NOVA Orchestration layer component requires information related
to the physical network topology, OpenD aylightd &t the PoP level)REST APis called,
however the specifics of the OpenDaylight API call are abstracted by the OCCI
interface from the component making the request. From a requestor perspective the
call for the physical network information appears to be the other middleware GET API
calls. The database at the middleware layer also contains information re garding the
connections between PoPs. For that reason, a graphdatabase based on NEO4j was
again selected for the implementation of this database . The PoPs linkinformation can
contain parameters such as currently available bandwidth and total link bandwidth
when available. This information can for example used by the Service Mapping
together with other PoP information to determine which PoP a VNF or network
service should be deployed on, considering the network flows between multiple VNFs
that belong to a given Network Service (NS).

The middleware is implemented in Python as a standalone application. The
information required to install it are:

1 Neo4j database URL
1 Neo4j database credentials.
9 Port number used by the middleware to expose the service.

451.0CCICompl i ant API 0s

The middleware layer exposes an OCClcompliant interface to dependent functional
entities within the T-NOVA Orchestrator. An OCCI approach was adopted as it builds
on work carried out by the Mobile Cloud Networking (MCN) FP7 project which
utilised OCCI interfaces in their system design and implementation [11]. It also
provides abstraction of the underlying implementation of the infrastructure
repository thus supporting easier reuse of the Orchestrator components by third
parties with an alternative repository solution if required.

OCCI is a RESTfulptocol and API for various kinds of management tasks. OCCI was
originally initiated to create a remote management API for laaS modelbased
services. These APIs supporthe development of interoperable tools for common

8 http://occi -wg.org/about/specification/

38|Page

http://occi-wg.org/about/specification/

T-NOVA | Deliverable D3.2

Infrastructure Resource Repository

tasks including deployment, autonomic scaling and monitoring [1]. The middleware
interface was implemented using the pyssf package’. In accordance with the OCCI
specification each resource in the repository is characterised by a kind. The kind is
defined by a category in the OCCI model. This kind is immutable and specifies a
resource's basic set of characteristics. This includes its location in the hierarchy,
attributes, and applicable actions. The kinds exposed by the middleware layer are
outlined in Table 4.3.

Kind

PoP

PoP link
Stack
Stack link

VM

VM link

Volume

Volume
link

Net
Port

Port link

Snapshot
Floating IP

Floating IP
link

Router

Router link

Table 4.3 Middleware API Kinds

Endpoint url
/pop/
/pop/link/
/pop/{pop_id}/stack/
Ipopl{pop_id}/stack/link/

/pop/{pop_id}/vm/

IpopHpop_id}vm/link/

/pop/{pop_id}/volume/

/pop/{pop_id}/volume/link/

/pop/{pop_id}/net/
/pop/{pop_id}/port/

/pop/{pop_id}/port/link/

/pop/{pop_id}/snapshot/
/pop/{pop_id}/floatingip/

/pop/{pop_id}/floatingip/link/

/pop/{pop_id}/router/
/pop/{pop_id }router/link/

? http://pyssf.sourceforge.net/

Description
Point of presence

Link
POPs

between two

OpensStack Stack

Link between a stack
and its resources

Virtual Machine

Link between a vm and
its resources (Volume,
Port etc.)

Cinder volume

Link with cinder
volume service and
snapshot

Neutron network
Neutron port

Link between port,
networks, floating IP,
pci device (in case of
PCI passthrough)

Cinder snapshot
Neutron Floating IP

Link between floating
ip and its network

Neutron virtual router

Link between router

Actions

GET, POST
PUT, DELETE

GET, POST
PUT, DELETE

GET

GET

GET

GET

GET

GET

GET
GET

GET

GET
GET

GET

GET
GET

3|Page

T-NOVA | Deliverable D3.2

Controller
Service

Controller
Service link

Hypervisor

Hypervisor
link

Cinder
Volume

Cinder
Volume

link

Machine

Machine
link

NUMA
Node

NUMA
node link

PCI Bridge

Bridge link

PCI Device

PCI
link

Device

/pop/{pop_id}/controller -
service/

/pop/{pop_id}/controller -
service/link/

/pop/{pop_id}/hypervisor/

Ipop/{pop_id}/hypervisor/link/

/pop/{pop_id}/cinder -volume/

/pop/{pop_id}/cinder -
volume/link/

/pop/{pop_id}machine/

/pop/{pop_id}/machine/link/

/pop/{pop_id}/numanode/

/pop/{pop_id}/numanode/link/

/pop/{pop_id}/bridge/

/pop/{pop_id}/bridge/link/

/pop/{pop_id}/pcidev/

/pop/{pop_id}/pcidev/link/

Infrastructure Resource Repository

and its interfaces

OpenStack Service
(Nova, Glance, Cinder,
Heat, Neutron)

Link between
OpensStack service and
the machine where is
hosted

Hypervisor used by
Nova Compute

Link between
hypervisor and the
machine where it is
running on

Cinder Volume service

Link between Cinder
Volume service and
the machine where it is
running on

Physical machine

Link between Machine
and NUMA node (if
NUMA architecture) or
Bridge and Sodet (if
No NUMA
architecture)

NUMA node

Link between NUMA
node and Bridge or
Socket

PCI Bridge

Link between PCI
bridge and PCI devices
connected to it

PCI Device

Link between PCI
Device and respective
OS device

GET

GET

GET

GET

GET

GET

GET

GET

GET

GET

GET

GET

GET

GET

40|Page

T-NOVA | Deliverable D3.2

Infrastructure Resource Repository

OS Device (allowed

OS Device /pop/{pop_id}/osdev/ type: Compute, GET
Network, Storage)
Right now only
OS Device : . Network device can
link fpopfpop_idj/osdev/link/ have connection to GET
SDN physical switch
Socket /pop/{pop_id}/socket/ Socket GET
. : . Link between socket
Socket link | /pop/{pop_id}/socket/link/ and cache node GET
Cache /pop/{pop_id}/cache/ Cache GET
Link to other cache
Cache link | /pop/pop_id}/socket/link/ nodes of lower level or | GET
to the Core
Core /pop/{pop_id}/core/ Physical Core GET
Core link /pop/{pop_id}/core/link/ Link to Process Units GET
node
PU /pop/{pop_id}/pu/ Processing unit GET
Switch /popl{pop_id}/switch/ Physical SDN switch GET
Link between Switch
Switch link /pop/pop_id}/switch/link/ and its interfaces GET
controlled by ODL
. . . Switch interface
Switch /popHpop_idy/switch - controlled by ODL GET
Interface interface/
controller
Switch . . Link between Switch
Interface {s,:)e?]{g)coe?”—r:dkyswn(:h i Interface and Network GET
link card of Physical Node

A complete API reference document is available particularly for partners working on

integration of Orchestration

layer

components with

infrastructure

repository

subsystem Most of kinds allow only the retrieve action, as the infrastructure
repository is updated automatically.

Only PoP WAN related information is fully managed by the Orchestrator. To add a
new PoP the Orchestration layer uses the following call:

POSThttp://middleware url:<middleware port>/pop/

--header "Accept: application/occi+json"

--header "Content -Type: text/occi" --header 'Category: pop;

scheme=" http://[schemas.ogf.org/occi/epa #";class="kind™
-d 'X-OCCI -Attribute: occi.epa.pop.name = "GR -ATH-0001"

41|Page

http://localhost:8888/pop/
http://schemas.ogf.org/occi/epa
http://schemas.ogf.org/occi/epa

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

X-OCCI -Attribute: occi.epa.pop.lat = 53.3720513
X-OCCI -Attribute: occi.epa.pop.lon = -6.5130686999999625
X-OCCI -Attribute: occi.epa.po p.graph_db_url
"http://neodj: intel tnova@ demokritos.com :7474/db/data/ "
X-OCCI -Attribute: occi.epa.pop.odl_url =
"http://demokritos.com:9001/restconf/operational/ "
X-OCCI -Attribute: occi.epa.pop.odl_name = "admin"
X-OCCI -Attribute: occi.epa.pop.odl_password="admin"

For each kind there are least two calls available:

1 One to retrieve the list of resources of the given kind
1 One to retrieve a single resource and its attributes.

For example:
Retrieving a list of virtual machines:

(Note: The PoP ID must be included in the request of the call)

GEThttp://middleware _url:<middleware_port>/pop/55ef7cce -
1e9b -4h8f-9839-d40ceeb670f4/vm/
--header "Accept: application/occi+json"

Extract from response:

[
{
"actions™: [],
"attributes"; {},
"identifier": "/vm/ee3fa7b8 -adlf-46¢7-8944-b7dc2640dcaa”,
"title"; "Virtual Machine"
h
"links": [
{
"actions": [],
"attributes™: {},
"identifier": "/vm/link/ee3fa7b8 -adilf -46¢7-8944-b7dc2640dcaa ->f18a3c74 -e3de -
4271-9284-e47af46471ba",
"source"; "/lvm/ee3fa7b8 -adlf -46c¢7-8944-b7dc2640dcaa”,
"target": "/port/fl8a3c74 -e3de -4271-9284-e47af46471ba"
b
{
"actions": [],
"attributes": {},
"identifier": "/vm/link/ee3fa7b8 -adlf-46c7-8944-b7dc2640dcaa ->hypervisor -2",
"source"; "/vm/ee3fa7b8 -adlf-46c¢7-8944-b7dc2640dcaa",
"target": "/hypervisor/hypervisor -2"

}
I
"mixins": []
b
{
"actions™: [],

"attributes"; {},
"identifier": "/vm/cf3365f6 -eel8 -4f54-9acd -38f8855249ab",

2

42|Page

mailto:intel_tnova@demokritos.com
http://localhost:9001/restconf/operational/
http://middleware_url:%3cmiddleware_port%3e/pop/55ef7cce-1e9b-4b8f-9839-d40ceeb670f4/vm/
http://middleware_url:%3cmiddleware_port%3e/pop/55ef7cce-1e9b-4b8f-9839-d40ceeb670f4/vm/

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

"links": [
{
"actions": [],
"attributes": {},
"identifier": "/vm/link/cf3365f6 -eel8 -4f54-9acd -38f8855249ab ->3f98d78e -a817 -
418a-aeee -44b0edf14169",
"source": "/lvm/cf3365f6 -eel8-4f54-9acd -38f8855249ab",
"target": "/port/3f98d78e -a817-418a-aeee -44b0edf14169"
h
{
"actions": [],
"attributes": {},
"identifier": "/vm/link/cf3365f6 -eel8 -4f54-9acd -38f8855249ab ->hypervisor -2",
"source": "/vm/cf3365f6 -eel8-4f54-9acd -38f8855249ab",
"target”: "/hypervisor/hypervisor -2"
}
1,
"mixins": []

h
]

Retrieving the details of a single virtual machine:

GEThttp://middleware_url:< middleware port>/pop/55ef7cce -1e9b -4b8f-9839-
d40ceeb670f4/vm/ee3fa7b8 -adilf -46¢7-8944-b7dc2640dcaa
--header "Accept: application/occi+json"

Extract from response:

{

"actions™: [],

"attributes": {

"occi.epa.attributes™: "{ \ "vm_state \ ":\ "active \ ", \ "internal_id \ ": null,
"availability_zone \":\ "nova\ "\ "ramdisk_id\ ":\ "\ ", \ "instance_type id \ "\ "2\ ",
“cleaned \": 0,\ "vm_mode \": null,

"reservation_id \ ":\ "r-rlfoblwj \ ", \ "disable_terminate \":0,\ "user_id\ ":
"d719c3652ff64911a3c896e9c11f53e3 \ ", \ "default_swap_device \": null,

"hostname \ ":\ "test-ee3fa7b8 -adif -46¢7-8944-b7dc2640dcaa \",\ "launched on \":
"controller \ ", \ "display_description \":\ "test\ ",

"power_state \": 1,\ "default_ephemeral_device \": null,\ "progress\": 0,

"project_id \ ":\ "b6488d1a9ff34bcfb3f95d0d4399b0b3 \ ", \ "root_device_name \":
"/devivda \",\ "node \ ":\ "controller \ ",

"ephemeral_gb \": 0,\ "access_ip_v6 \": null, \ "access_ip_v4 \": null, \ "kernel_id\ ":\ "\ ",
"key _name \ ":\ "odl-keypair \ ", \ "image_id \ ":\ "83da27be -a376-4920-ab3a -
12473258cfd \ ", \ "host\ ":\ "controller \ ",

"ephemeral_key uuid \": null, \ "task_state\ ": null, \ "shutdown_terminate \": 0O,
"cell_name \ ": null, \ "root_gb \ ": 20, \ "locked \ ": 0, \ "locked_by \": null,

“launch_index \": 1,\ "memory_mb \ ": 2048, \ "vcpus\ ": 1,

"architecture \": null, \ "auto_disk config \": 1,\ "os_type\ ": null, \ "config_drive \ ":\ "\ ",
"ports\ ": [\ "f18a3c74 -e3de -4271-9284-e47af46471ba \ "}",

"occi.epa.category": "compute”,

"occi.epa.hostname": "controller",

"occi.epa.name"”: "test -ee3fa 7b8-adlf -46¢7-8944-b7dc2640dcaa",

"occi.epa.pop”: "IR -LEX0001",

e ¢ o

43|Page

http://middleware_url:%3cmiddleware_port%3e/vm/
http://middleware_url:%3cmiddleware_port%3e/vm/

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

"occi.epa.pop_id": "55ef7cce -1e9b -4b8f-9839-d40ceeh670f4",
"occi.epa.resource_type": "vm",
"occi.epa.timestamp": 1434536853.240091

k

"identifier": "/vm/ee3fa7b8 -adlf -46c7-8944-b7dc2640dcaa”,

!

44 |Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

5. INFORMATION RESOURCES

The infrastructure repository database contains information on the virtual and
physical resources of a FTNOVA PoP. Each resurce is represented in the databaseas
a node with links to others nodes. The following tables outline the key information

stored with respect to the physical resources (Table 5.1), virtual resourcesT@ble 5.2)
and physical network resources (Table 5.3).

Table 5.1 Physical resources

Type Description Main A ttributes
Each host of the OpenStack Operating system
Physical Machine cluster information, hostname,
architecture
Bridge PCI Bridge Type of bridge
Socket CPU socket CPU model supported
Core Core
Process unit Cache size, bogomips,
PU
model, cpu speed
NUMA node Group of CPU in NUMA NUMA npde index, local
architecture memory size
Node representing a cache Cache type (data or
Cache memory instruction), size, cache line
size
PCI device correspondng to PCI vendor, pci_type
PCI device an OS device Inform‘atlop (storage, network, compute),
relates to how the device is name
seen by the OS
Storage OS Device Storage device like disk Name
Network device like network ' Name, mac address, SROV
Network OS device | card information, DPDK
information
Table 5.2 Virtual Resources:
Type Description Main A ttributes
Status, DHCP agent,
. subnets information ,
Network Virtual network network type (GRE, VLAN|
VXLAN)

45|Page

T-NOVA | Deliverable D3.2

Port

Floating IP

Router

VM

Volume

Stack

Hypervisor

Cinder Volume

Snapshot

Glance service

Heat service

Cinder service

Nova service

Neutron service

Type

Physical Switch

Switch interface

Neutron ports

Neutron floating IP associated
to a Neutron port

Neutron Virtual Router

Nova virtual machine

Cinder Volumes

Heat stack

Hypervisor used by Nova

OpensStack service for Volume
management

Cinder volume snapshot
Glance API service (image

management)

Heat API service(orchestration
management)

Cinder API service (volume
management)

Nova controller service (VMs
management)

Neutron controller service
(Network management)

Infrastructure Resource Repository

Driver (OpenDaylight,
openvswitch), mac address,
floating ips, IP address

Router ID, Fixed Port, IP

Gateway, status, I3 agent
information

Image, flavour, IP
addresses, hostname,

Size, mount point,
attachment information

Template, list of associated
resources, status

Information about running
VMs, supported features
and architecture

Status

Status, original volume

information
Endpoints
Endpoints
Endpoints

Endpoints

Endpoints

Table 5.3 Physical network resources

Description

Physical SDN switch controlled Manufacturer,

by OpenDaylight

Physical switch

interfaces, Name,

Main attributes

switch
features, management I[P
address, software version

Interface features,

eventually connected to the | status, received/transmitted

hosts network cards

packets, mac address

6 |Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

To augment the information contained in Table s 5.1-5.3, detail descriptions of the all
the resources types and their attributes have been documented as outlined in Table
5.4.

Table 5.4 Infrastructure database information resource documentation

Document Document #

Enhanced Platform Awareness DatabasePhysical Resourct T-NOVA WP32-001
Description

Enhanced Platform Awareness DatabaseVirtual Resources T-NOVA WP32-002
Description

Enhanced Platform Awareness Database Physical Network T-NOVA WP32-003
Resourcedescription

Enhanced Platform Awareness Database Resources Linki T-NOVA WPJ 2004
Description

5.1. Infrastructure Repository Data Model

The purpose of the infrastructure repository data model is to define and organise
how the data elements are extracted from the NFVI-PoP resources and todefine how
the data elements relate to one another. In approaching a graph data model the key
guestion to consider is what domain knowledge will be extr acted from the graph. A
key advantage of a graph data model is that it is good at showing how resourcesare
related to each other; it is also helpful in formulating the likely questions that will be
asked. Agraph database takesadf f er ent ap pnnectandh rted adim@nshi ps
comparison to traditional SQL approaches. The richness andexpressivenature of the
relationships between nodes are as important as the actual nodes. This combination
of features provides a convenient mapping to complex systems such as those found
in a NFVIFPoP which can be broken down into layers and inter layerrelationships.

The infrastructure repository data model can be broken down into four primary

layers, namely workloads (i.e. virtualisel network functions and network senices),

virtual resources (e.g. virtual machines, networks), resource virtualisation (e.qg.

hypervisor) and finally physical resources €ompute, storage and network) as shown

in Figure 5-1. The model also comprehends the relationship between the nodes in

the layers. For examplet he connection between VM and hyper
which encapsulates the explicit relationship between the two node types.

47|Page

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

Figure 5-1 High level data model for infrastructure repository

In Figure 5-2 the relationship between computes nodes and the physical network is
illustrated. The relevant components in a compute node that are involved in
providing a network connection are shown in t he model.

48|Page

