

Deliverable D3.2

Infrastructure Resource

Repository

Editor Michael J. McGrath (Intel)

Contributors Giuseppe Petralia, Vincenzo Riccobene (Intel), Jordi Ferrer

Riera, Josep Batallé (i2CAT), José Bonnet, (PTIN), Marco

Trubian (UMIMI), Francesco Liberati (CRAT), Marco Di

Girolamo (HP), George Xilouris (NCSRD), Thomas Pliakas

(CLDST)

Version 1.0

Date July 31st, 2015

Distribution PUBLIC (PU)

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

2 | P a g e

Executive Summary

The infrastructure repository is a key subsystem of the T-NOVA Orchestration layer

which provides infrastructure related information collected from the VIM and NFVI

components of the IVM layer. This subsystem is comprised of a number of key

elements and capabilities including (i) data model; (ii) resource infrastructure

repository; (iii) access mechanisms to the infrastructure repository; (iv) enhancement

of the default information resources provided by cloud and SDN environments and

(v) a resource discovery mechanism.

Analysis of the infrastructure information from the technologies selected to

implement the VIM (namely OpenStack and OpenDaylight) revealed a significant

deficit in available infrastructure information. An analysis of the various potential

implementations was carried out and a candidate was selected for a prototype

implementation. This prototype was used first to investigate if the necessary

requirements could be supported and secondly to identify new requirements which

had not previously been captured during the architectural design activities carried

out work package WP2.

Using both the learnings from the prototype and the requirements, the final design

of the infrastructure repository subsystem was developed. This design comprised of 5

key components. The first component is an enhanced platform awareness agent

which runs on the compute nodes and collects platform specific information. This

component was implemented as framework of libraries, commands and script to

collect and aggregate a rich set of compute node information. The second

component is a set of listener services. One listener is dedicated for EPA agent

messages and a second one is dedicated to OpenStack related messages. The third

component is the EPA controller which coordinates with listener services to process

and persist updates to the repository database using data files received from the EPA

agents or OpenStack infrastructure landscape change notifications. The fourth

component is the infrastructure repository database which is responsible for storing

the infrastructure related information and the relationships between the stored

information. The database was implemented as a graph database in order to support

the encoding of the relationships between the components of the NFVI. This

approach also provided a convenient mapping of the system structures within the

NFVI and the node structures of the graph database. The final component is a

middleware API layer which provides a common OCCI compliant REST based

interface to the Orchestrator components that need to retrieve information from the

repository. The middleware layer also features a database to support the storage of

NFVI PoP ingress and egress endpoints and associated parametric data for the links.

The middleware implementation also provides support for multiple instances of the

PoP level resources repository databases ensure appropriate scalability of the

subsystem. All components have been successfully implemented and integrated to

deliver a fully functional infrastructure repository subsystem.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

3 | P a g e

Table of Contents

1. INTRODUCTION ... 6

2. REQUIREMENTS UPDATES .. 8

2.1. ADDITIONAL REQUIREMENTS .. 9

3. INFRASTRUCTURE REPOSITORY DESIGN .. 11

3.1. OVERVIEW OF INFRASTRUCTURE DATA SOURCES .. 11

3.1.1. NOVA Database .. 11

3.1.2. Neutron Database .. 12

3.1.3. OpenDaylight ... 12

3.2. ENHANCED PLATFORM AWARENESS .. 13

3.3. REPOSITORY PROTOTYPE DESIGN ... 13

3.4. FINAL RESOURCE REPOSITORY SUBSYSTEM ARCHITECTURE ... 15

4. INFRASTRUCTURE REPOSITORY SUB-SYSTEM IMPLEMENTATION 24

4.1. ENHANCED PLATFORM AWARENESS AGENT IMPLEMENTATION .. 25

4.2. INFRASTRUCTURE REPOSITORY DATABASE IMPLEMENTATION .. 29

4.3. LISTENER SERVICES IMPLEMENTATION ... 32

4.4. EPA CONTROLLER SERVICE IMPLEMENTATION ... 35

4.5. MIDDLEWARE API LAYER IMPLEMENTATION .. 37

4.5.1. OCCI Compliant API’s ... 38

5. INFORMATION RESOURCES .. 45

5.1. INFRASTRUCTURE REPOSITORY DATA MODEL .. 47

5.2. RESOURCE VISUALISATION .. 51

5.2.1. Use Case 1 ... 51

5.2.2. Use Case 2 ... 52

5.2.3. Use Case 3 ... 54

5.2.4. Use Case 4 ... 56

6. INFRASTRUCTURE REPOSITORY SUBSYSTEM INTEGRATION 58

6.1. RESOURCE MAPPING ALGORITHM ... 58

6.2. ORCHESTRATOR INTEGRATION.. 59

6.3. ORCHESTRATION LAYER INTERFACES ... 60

6.4. SERVICE VISUALISATION MODULE .. 60

6.4.1. Features and Benefits .. 61

6.4.2. Service Visualisation Architecture ... 61

6.5. GATEKEEPER INTEGRATION .. 62

7. INFRASTRUCTURE REPOSITORY DISTRIBUTION PACKAGE 65

8. CONCLUSIONS .. 67

9. LIST OF ACRONYMS ... 69

10. REFERENCES .. 71

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

4 | P a g e

Figures

Figure 1-1 T-NOVA Orchestrator Architecture .. 6

Figure 3-1 Prototype infrastructure repository architecture .. 14

Figure 3-2 Sample of compute node PCIe devices .. 14

Figure 3-3 Infrastructure Repository Sub System Architecture ... 16

Figure 3-4 High Level EPA Agent Architecture.. 18

Figure 3-5 Simple server resource graph. ... 20

Figure 3-6 Controller system overview... 21

Figure 3-7 Middleware layer design .. 22

Figure 4-1 Infrastructure Repository – Key information flows .. 24

Figure 4-2 Hardware locality data extract ... 26

Figure 4-3 Output of CPUInfo command .. 27

Figure 4-4 Output of DPDK script .. 27

Figure 4-5 Output of SR-IOV script showing total number of SR-IOV NIC virtual

functions .. 28

Figure 4-6 EPA Agent execution flow diagram ... 29

Figure 4-7 Cypher Query result ... 30

Figure 4-8 OpenStack Notification Configurations ... 33

Figure 4-9 Events Listener Architecture ... 34

Figure 5-1 High level data model for infrastructure repository .. 48

Figure 5-2 Data model for compute and physical network related resources 49

Figure 5-3 Data model for compute resources ... 50

Figure 5-4 Data model for virtual resources .. 50

Figure 5-5 Retrieve PoPs Topology Flow Diagram .. 52

Figure 5-6 Example of a T-Nova PoPs topology .. 52

Figure 5-7 Retrieve VNF allocation Flow Diagram ... 53

Figure 5-8 VNF Resources allocation graph ... 54

Figure 5-9 Retrieve Network Topology Flow Diagram ... 55

Figure 5-10 Physical Network Topology .. 56

Figure 5-11 Flow diagram illustrating the steps in the retrieval of network ports in

failed state ... 57

Figure 5-12 Visualisation Network Port failure between a switch and compute node 57

Figure 6-1 Integration repository in T-NOVA Orchestrator management UI.................. 60

Figure 6-2 Service Visualisation Module Architecture .. 62

Figure 6-3 Middleware Layer - Gatekeeper integration .. 63

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

5 | P a g e

Tables

Table 2.1 Infrastructure Repository Requirements .. 8

Table 2.2 Additional Infrastructure Repository Requirements .. 9

Table 4.1 EPA Data Flows ... 25

Table 4.2 Methods for Repository Database updates .. 31

Table 4.3 Middleware API Kinds .. 39

Table 5.1 Physical resources ... 45

Table 5.2 Virtual Resources: .. 45

Table 5.3 Physical network resources ... 46

Table 5.4 Infrastructure database information resource documentation 47

Table 6.1 Orchestrator micro service dependencies ... 59

Table 6.2 Gatekeeper API .. 62

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

6 | P a g e

1. INTRODUCTION

The primary goal of Task 3.2 is to design and implement a resource discovery and

repository subsystem as part of the T-NOVA Orchestration layer. The infrastructure

repository subsystem is responsible for the collection and persistence of

infrastructure data available from the infrastructure virtualisation and management

(IVM) layer. The repository subsystem is also required to provide an interface to

support requests from the Orchestration layer functional components (such as the

resource mapping module) for infrastructure resource information as shown in Figure

1-1. The Orchestration layer utilises this information to reason over what collection of

resource types need to be provisioned by the IVM for different types of VNFs within

the T-NOVA system. The Orchestration layer then sends requests to the IVM to

provision the required VM resources.

Figure 1-1 T-NOVA Orchestrator Architecture

The design of the repository subsystem addresses the challenges of assimilating

infrastructure related information from sources within the IVM, namely the cloud

infrastructure and data centre network environments. This subsystem comprises a

number of key elements including a data model, resource information repositories,

access mechanisms to the information repositories. The subsystem also augments the

information provided by cloud and SDN environments through a resource discovery

mechanism.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

7 | P a g e

The IVM layer of the T-NOVA system comprises of a virtual infrastructure manager

(VIM) and network function virtualisation infrastructure (NFVI). The design phase of

the repository focused initially on identifying infrastructure related information

available from the selected technologies to implement the VIM and NFVI. OpenStack

and OpenDaylight were selected to implement the VIM while standard X86 high

volume compute nodes and SDN enabled switches together with various support

technologies were selected for the NFVI implementation.

An analysis of the service databases within OpenStack (Juno release) identified that

only limited infrastructure related information was available. For example in the

NOVA database the only CPU information available beyond manufacturer and speed

was CPU status flags. Addressing these shortcomings was a key goal for the

repository subsystem design and implementation.

Using learnings collected from the analysis of the information sources and the

requirements identified in the architecture related deliverables in WP2 a number of

approaches to the design of the subsystem were identified. The respective pros and

cons of each implementation were evaluated. A candidate design was selected for a

prototype implementation. This prototype was used to evaluate and refine the

proposed architecture of the subsystem and its components in cooperation with

other T-NOVA tasks such as T3.1, T3.3, T3.4, T4.1 and T4.4. This initial prototype

implementation was presented in deliverable 3.1.

Learnings from the prototype implementation were used to collect additional

requirements and to define the final architecture of the resource repository

subsystem. The final subsystem design comprises of enhanced platform (EPA) agents

running on the compute nodes in the NFVI which collect and report detailed platform

information. When platform updates are available from the EPA agents, notification

messages are sent to a controller via a specific listener service. Upon receipt of

messages from the EPA listener service, data files sent by the EPA agents to a storage

directory are processed by the controller and used to update the central repository

databases. A listener service is also used to intercept and pipeline infrastructure

related messages in OpenStack and to update the repository database via the

controller. The infrastructure repository database is implemented as a graph

database. The graph database provides a hierarchical relationship in the form of

semantically relevant connections between the nodes stored as a link. An Open Cloud

Compute Interface (OCCI) [1] compliant middleware layer provides a common

interface to the resource information stored in the graph databases. Additionally the

middleware API provides an abstracted single access point to physical network

information available from OpenDaylight through its REST API’s. The middleware

layer also features a graph database which is used to store the endpoint information

of OpenStack services for each NFV-PoP under the control of the T-NOVA

Orchestrator. The database also supports storage of inter-PoP WAN connection

information which can be inserted via a REST PUT API call.

The task also defined a number of sample visualisation use cases. The use cases

focused on scenarios where the resource information stored in the repository

subsystem could be used to support specified problems or operational needs.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

8 | P a g e

2. REQUIREMENTS UPDATES

Initial requirements for the T-NOVA Orchestrator and the IVM were previously

documented in deliverable 2.31. As an initial step these requirements were analysed

to identify the ones with a direct mapping to necessary infrastructure repository

functionalities and features. Table 2.1 provides a listing of the relevant requirements

identified and outlines how they are addressed in the design and implementation of

the infrastructure repository subsystem.

Table 2.1 Infrastructure Repository Requirements

Requirement Infrastructure Repository Support.

NFVO.20 Resources Inventory
tracking

The repository provides specific fields for tracking
the resource allocation, relying on existing fields in
OpenStack API (referring to CPU, disks, RAM usage,
etc.). Additionally, the repository provides tracking
of resources currently not identified by OpenStack
(e.g. GPUs, NICs, DPDK libraries etc.) via its EPA
agents.

NFVO.17 Mapping Resources

The infrastructure repository stores all available
infrastructure related information from the
physical and virtualised resources within an NFVI-
PoP and exposes this information through a unified
set of middleware APIs to the resource mapping
functional entity.

Or-Vi.04 Retrieve infrastructure
usage data

Data related to dynamic infrastructure resource
allocations to VM instances is stored in the
repository e.g. number of vCPUs allocated etc.

Or-Vi.05 Retrieve infrastructure
resources metadata

Infrastructure metadata is stored in the
infrastructure repository for example CPU
instruction sets, NIC support for DPDK etc.

VIM.1 Ability to handle
heterogeneous physical resources

Heterogeneous infrastructure information e.g. PCIe
co-processor card, GPU etc. is collected by EPA
agents running on the physical compute nodes in
the NFVI-PoP and stored in the infrastructure
repository database.

VIM.4 Resource abstraction

The infrastructure data stored in the repository
database is structured in a hierarchical graph based
schema. This approach supports configurable
abstraction of the resource details via the
middleware API.

VIM.7 Translation of references
between logical and physical
resource identifiers

The infrastructure repository uses as resource tags:

 hostname+type – physical resources.

 OpenStack UUID for virtual resources

 OpenFlow ID for physical network

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

9 | P a g e

resources.

VIM.9 Control and Monitoring
Specific event related information such as Resize,
Create etc. is stored for VMs.

VIM.20 Query API and Monitoring

Hypervisor related information e.g. number of
available vCPUs, available disk size etc. is collected
and stored in the infrastructure repository
database.

VIM.23 Hardware Information
Collection

Hardware information is collected by EPA agents
running on the NFVI compute nodes and persisted
to the infrastructure repository database.
Physical network resource information is exposed
through the API middleware layer via
OpenDaylight’s REST interface.

C.7 Compute Domain Metrics

Information regarding capacity of hardware
resources e.g. disk size, RAM size etc. is persisted
into the infrastructure repository database.
Dynamic metrics such as CPU utilisation are out of
scope for task 3.2 and are addressed specifically by
task 4.4.

H.7 Platform Features
Awareness/Exposure

Hardware-specific features are collected by EPA
agents running on the NFVI compute nodes and
persisted to the infrastructure repository database.
Platform information is exposed via middleware
APIs.

2.1. Additional Requirements

As the infrastructure repository is a core subsystem of the Orchestration layer its

implementation has direct dependencies upon a number of WP3 and WP4 tasks, as

previously described in deliverable 3-1 (see section 3.9). As outlined later in section

3.3 a prototype implementation of the infrastructure repository was developed to act

as a ‘concept car’ and was used with the dependent tasks to determine if the existing

requirements were appropriately fulfilled as well as to identify additional

requirements. The new requirements identified are outlined in Table 2.2 and were

incorporated into the final design phase of the infrastructure repository.

Table 2.2 Additional Infrastructure Repository Requirements

ID Requirement Infrastructure Repository Support

IR01
Resource information SHALL be
stored using a standard unique
identifier.

Resource information is stored in the
subsystem database using the
OpenStack’s UUID.

IR02

The infrastructure repository SHALL
be able to store information about
the PoP Ingress and Egress
endpoints.

The infrastructure repository provides a
REST PUT call in the middleware API
which supports the insertion of WAN
connection information into the
middleware database.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

10 | P a g e

IR03

The infrastructure repository SHALL
support more than one NFVI-PoP
instance

An instance of the infrastructure
repository runs at each NFVI-PoP. A single
point of access to all instances of
information repositories is provided via
middleware layer to the Orchestrator.

IR04
The infrastructure repository SHALL
provide a common interface to the
Orchestrator functional entities

The infrastructure repository provides a
single interface through an API
middleware layer for consumers of the
information stored in the repository.

IR05

The infrastructure repository SHALL
minimise the overhead it places on
its data sources.

A listener service was developed which
intercepts messages from the OpenStack
notification.info queue and updates the
resource repository via the EPA Controller
with changes in the resource landscape
relating to NOVA, Neutron and Cinder.

IR06

The infrastructure repository SHALL
provide an interface which abstracts
its implementation

The middleware layer API’s
implementation is based on an OCCI [2]
compliant specification which provides
full abstraction of the infrastructure
repository implementation.

IR07

The infrastructure repository SHALL
use a common authentication
mechanism for all API calls

All calls to the middleware layer APIs are
authenticated using the T-Nova
Identity/Authorisation micro-service
(GateKeeper)

IR08

The infrastructure repository SHALL
store the relationships between
resources

The infrastructure repository database is
implemented as a graph database which is
used to store the relationships between
resources in a hierarchical manner.

A total of 20 specific requirements were considered in the architectural design of the

infrastructure repository. The requirements listed in Tables 2-1 and 2-2 were also

used to evaluate the final repository implementation to ensure the available

functionalities and capabilities fully satisfied the identified requirements.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

11 | P a g e

3. INFRASTRUCTURE REPOSITORY DESIGN

An iterative and incremental process was adopted in the design and development of

the repository subsystem [3]. This approach can be described as a combination of

both an iterative design method and an incremental build model for application

software development. The development lifecycle was composed of several iterations

in sequence. The initial iterations of the infrastructure repository were previously

described in Section 3.7 of deliverable 3-1. The respective pros and cons of each

identified design option were also presented. A key influence in the design of the

repository subsystems was the targeted ability to provide Enhanced Platform

Awareness (EPA) style information. Today’s compute platforms with their rapidly

evolving technologies embedded in processors and chipsets, integrated on server

boards, and installed in PCIe slots, offer a rich set of capabilities which provide

significant performance benefits to specific workload types if appropriately utilised.

However cloud environment such as OpenStack, have not being taking full

advantages of these enhancements. This is a particular acute problem for NFV type

workloads whose performance can be significantly influenced by platform technology

features. Therefore offering EPA type information as part of the infrastructure

repository subsystem was an important design goal.

In this section a brief summary of the initial iterations is presented together with the

final design of the repository subsystem. The key learnings from these early iterations

were used to inform the final design implementation of the repository subsystem

which is described in section 3.3. The final design comprises five functional entities,

namely: EPA agents, infrastructure repository database, listener services (EPA and

OpenStack), EPA Controller, middleware layer API’s and database.

3.1. Overview of Infrastructure Data Sources

The main sources of infrastructure information based on the software platforms

selected to implement the functional entities of the IVM layer (namely the VIM and

NFVI-PoP) are OpenStack and OpenDaylight. The Kilo release of OpenStack and

Helium release of OpenDaylight were selected as the base platform releases for the

implementation of the T-NOVA VIM. From a hardware perspective standard X86 high

volume servers from Hewlett Packard (HP) were selected during the design and

testing phases of the repository subsystem.

As OpenStack is a modular platform, each module has its own database to manage

the resources and information relevant to functions of that module. In the context of

the T-NOVA infrastructure repository, the databases of primary interest are the Nova

and Neutron DB’s. Detailed information on the databases can be found in Section 3.4

of deliverable 3-1.

3.1.1. NOVA Database

OpenStack NOVA database can be implemented using any SQL Alchemy-compatible

database. For T-NOVA the default MySQL implementation is used. The nova-

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

12 | P a g e

conductor service is the only service that writes to the database. The other NOVA

compute services access the database through the nova-conductor service. The

NOVA database is relative complex, containing in excess of 100 tables. These tables

were examined to identify which ones contained infrastructure data that was

potentially useful to Orchestration layer related operations such as resource mapping.

The compute_nodes table contains the most useful physical hosts information

including information on the hypervisor, the number of virtual CPUs, available/used

main memory (RAM), available/used disk space, CPU details (such as vendor, model,

architecture, CPU flags, the number of cores, etc.).

Information on virtual machine instances is stored in the instances table. An instance

dataset can include fixed IPs, floating IPs, volumes, virtual interfaces that provide

network access, an instance type, and an image.

3.1.2. Neutron Database

Neutron is the OpenStack component that enables network virtualisation and

provides “Networking as a Service”. The service is based on a model of virtual

networks, subnets and port abstractions to describe the networking resources. The

primary tables of interest are ports, routers, networks, subnets and ml2_port_bindings.

A subnet is a block of IP addresses that can be assigned to the VMs. A port is a virtual

switch connection point. Each VM can attach its virtual Network Interface Controller

(vNIC) to a network through a port. A port has a fixed IP address taken from the

address subset of the related subnet. Routers are local entities that work at Layer-3,

enabling packets routing between subnets, packets forwarding from internal to

external networking, providing Network Address Translation (NAT) services and

providing access instances from external networks through floating IPs.

3.1.3. OpenDaylight

OpenDaylight provides a set of base functions which are supported through a set of

managers and components. The relevant ones from a network infrastructure

perspective are [4]:

 Topology Manager – responsible for storing and handling the interconnection

configuration of managed network devices. It creates the root node in the

topology operational subtree during controller start-up and actively listens for

notifications that require necessary updates to the subtree, including all

discovered switches and their interconnections.

 Switch Manager – provides network nodes (switches) and node connectors

(switch ports) details.

 Inventory Manager – Maintains the concurrency of the inventory database by

querying and updating switch and port information managed by OpenDaylight.

The information stored by these managers is exposed via REST interfaces. The REST

interfaces of interest from an infrastructure perspective are:

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

13 | P a g e

 OpenFlow Nodes: extends the top-level inventory node with OpenFlow (OF) -

specific features that allow retrieving and programming of OF-specific state,

such as ports, tables, flows, etc.

 Base Topology - list of all topologies known to the controller

3.2. Enhanced Platform Awareness

The purpose of EPA is to detect platform capabilities through the discovery, tracking,

and reporting of enhanced features in the CPU and PCIe slots [5]. OpenStack Juno

and the recent Kilo release offer some EPA platform information, for example PCIe

aware NUMA pinning. Future releases of OpenStack will further increase the richness

of the EPA data available. However within the context of the T-NOVA project

timelines current EPA support within OpenStack was considered to be insufficient;

therefore in the design of the repository it was necessary to consider appropriate

functionality ensuring the availability rich platform information from the subsystem

database. It is also important to note that EPA extends beyond simply capturing

platform information. In order to use this information in a cloud environment such as

OpenStack, filtering and matching of available platforms with the specific capabilities

to an instance type requesting the desired features needs to be considered. Finally

scheduling and installing the instance onto the selected platform with the enabled

features is required. While these latter two requirements are out of scope for this task

they will be considered by other T-NOVA tasks such as 4.5 and 7.1.

3.3. Repository Prototype Design

The initial prototype design focused on the use of existing OpenStack and

OpenDaylight APIs to expose NFVI-PoP infrastructural information to the T-NOVA

Orchestration layer. This approach provided advantages as the API’s available are

standardised and concurrent information is always available. However there are a

number of key disadvantages to this approach. OpenStack provides over one

hundred REST APIs which increases the potential complexity of Orchestration

interactions, for example multiple APIs could be required to retrieve an information

set of interest. Also the infrastructure specific information available from the services

databases is limited in nature.

Three potential designs where initially identified each with respective pros and cons

(see section 3.3 deliverable 3-1). The prototype design is shown in Figure 3.1. This

design addressed the issues relating to lack of platform information, i.e. enhanced

platform awareness by utilising agents. These agents running on the NFVI compute

nodes collect detailed platform information and persist the information to a central

database. Information stored in the database is exposed via a REST API to consuming

components.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

14 | P a g e

Figure 3-1 Prototype infrastructure repository architecture

The REST API design of the repository prototype was based on the same structure as

the existing OpenStack API, and from a user perspective they appear as a simple

extension of them. An example of a REST API call is shown in Figure 3-2, which

returns a list of the PCIe devices available from a specified host. The call takes the

form of:

GET /epa/v1/hosts/[host_id]/pci_devices

Figure 3-2 Sample of compute node PCIe devices

This prototype was implemented to be fully functional and was used as a ‘concept

vehicle’ to elicit feedback and to identify new requirements for the tasks dependent

on the repository subsystem. For example requirements IR03 – IR05 were identified

as result of this process. Analysis of the implementation revealed that the

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

15 | P a g e

implementation did not adequately support requirements IR02 and IR03. In a multi-

PoP scenario complex and ineffective interactions between the T-NOVA Orchestrator

and the various OpenStack and OpenDaylight instances would be required;

furthermore, there was no provision for storing the ingress and egress network

endpoints of the PoP’s (i.e. WAN connections).

The prototype implementation supported performance evaluation of the

implemented functional requirements, and also helped to identify limitations in

available functionality.

The key learnings and the additional requirements identified in cooperation with the

dependent tasks on the infrastructure repository were used to inform the final design

of the subsystem which is outlined in the following section.

3.4. Final Resource Repository Subsystem Architecture

The key inputs into the final design of infrastructure repository were the prototype

implementation as outlined above and in deliverable 3-01, the requirements defined

in the WP2 deliverables and the new requirements (IR01 – IR08) identified during the

prototyping phase. The final architecture design of the infrastructure repository

subsystem is shown in Figure 3-3. The functional components of the architecture are

as follows:

 EPA Agents – Python based software agent running on the compute nodes of

the NFVI-PoP. A central EPA controller service provides aggregation of data

from each agent and persists the data to a central database.

 Infrastructure Repository Database – Collected infrastructure data is stored

in a graph database where resources are represented as nodes with

associated properties. Edges between the nodes store information on the

relationship between nodes.

 Listener Services- Two separate listener services are specified within the

architecture. The OpenStack Notification listener service is designed to

intercept messages from the OpenStack notification.info queue and to

provide notifications to the controller. The EPA agent listener service

intercepts EPA agent messages and notifies the controller of the messages in

order to trigger processing of received data files and to use the data to carry

out an update database action.

 EPA Controller – The controller is responsible for updating the infrastructure

database based on information received from the listener services and data

files sent by the EPA agents. One instance of the controller runs in each NVFI-

PoP. The service runs on a compute node within the NFVI.

 API Middleware Layer – Provides a common set of API calls that can be used

by all the T-NOVA Orchestration layer functional entities.

The key changes from the initial prototype implementation were as follows:

 The infrastructure repository database is implemented using a graph

database. The prototype implementation used a MySQL relational database.

The rational for this significant design change was to support encoding of the

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

16 | P a g e

relationship between resources (see requirement IR08) and to arrange

resources into logical layers which represented the stack of physical, virtual

resources and workloads.

 Multi NFVI-PoPs are supported with a repository instance per PoP. All

repository instances are accessible through a common middleware API (see

requirement IR03).

 The API middleware layer provides a common interface for all T-NOVA

Orchestrator functional entities (see requirement IR04).

 The API middleware layer database provides support for storing information

on the PoP ingress and egress endpoints within the T-NOVA system (see

requirement IR02).

 The API middleware layer is designed to be OCCI compliant, which provides

abstraction from the underlying implementation (see requirement IR06)

 An OpenStack listener service provides interception of infrastructure related

messages and updates to the infrastructure repository database (see

requirement IR05). This approach reduces the overhead on the OpenStack

service databases by eliminating the need to poll all the databases on a

recurring basis.

 The API middleware layer uses the T-NOVA Gatekeeper service for

authentication of API calls (see requirement IR07).

Figure 3-3 Infrastructure Repository Sub System Architecture

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

17 | P a g e

3.4.1.1. Enhanced Platform Awareness Agent Design

As previously outlined in deliverable 3-1, analysis of the NOVA database revealed

that limited compute platform information was stored in the Juno OpenStack release.

For example a significant gap was the absence of information relating to the available

PCIe devices such as network cards for a given compute platform. In order to

improve the richness of the available platform information beyond what was

accessible in the NOVA database; direct interrogation of the NFVI resources was

required in order to fulfil requirements VIM23 and H7.

Two important considerations in the design of the component were scalability and

support for enhanced platform awareness. In order to support scalability, a per

compute node agent based approach was selected as shown in Figure 3-4. Secondly

the agent was designed to provide complete platform information at installation

time. Thirdly a software agent approach was selected to meet some key design goals.

These goals were as follows:

 Runs and collects host information upon host start-up.

 Does not require interaction with a user.

 Invokes necessary support tasks such as communication functions.

For an operational perspective the design of the agent includes the following

assumptions:

 An agent runs each time the node is started or rebooted.

 The EPA agent image is included in the VM images used by the T-NOVA VIM.

 The configuration of NFVI nodes is considered to be stable. As new nodes are

added, an EPA runs at start-up capturing the platform details of the new

node. Hardware upgrades are considered to require a compute reboot which

will allow the agent to capture hardware upgrades or changes.

Another design consideration was execution flexibility. For the purposes of the

current T-NOVA implementation, agent execution is bounded to the compute node

boot cycle. However in environments where low frequency updates are insufficient,

the agents can be configured to run on scheduled basis as a system cron job. In this

way the concurrency of the compute node information can be maintained for highly

dynamic environments.

In order to address EPA needs, the information collected from each compute node in

the NFVI PoP should have high granularity. Key types of required information

included NUMA nodes, PCIe devices such as network cards and coprocessors etc. The

design of the agent therefore needs to enable the capture of both detailed platform

information and the hierarchical relationship between the components. Additionally

the design of the agents needs to accommodate both the identification of resources

and in some cases the configuration details of a device, e.g. the number of SR-IOV

channels allocated on a NIC and the number of free channels available. Therefore

implementing a single mechanism to retrieve all the information of interest is

challenging. As a result, a framework based approach where utilities, scripts and

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

18 | P a g e

commands are used collectively under the control umbrella of an agent to retrieve

the necessary information was adopted.

All information generated by the agents should be persisted to a file format which

can be sent to a common aggregation service in an asynchronous manner. Design

details of the aggregation service are outlined in section 3.4.1.3.

Figure 3-4 High Level EPA Agent Architecture

3.4.1.2. Infrastructure Repository Database Design

The previous prototype implementation used a standard MySQL relational database

for the storage of resource information. However in order to encode the relationship

between the resources and associated parameters (see IR08) in an efficient manner a

graph database approach was adopted for the final database design. Graph

databases are NoSQL (Not only SQL) database systems which commonly use a

directed acyclic graph (DAG) to store data relationships. SQL based databases store

and retrieve information stored in tabular relationships while graph databases use a

graph data model for storage and processing of data. Graph databases bring

application specific advantages such as simpler design and horizontal scaling. NoSQL

databases are finding popularity for big data and real-time web applications. From

the perspective of the infrastructure repository database design the rational for the

use of a graph database approach is that it allows you to find interconnected data

much faster and in a more scalable manner that in a relational data model [6]. For

example traversal type queries, which would be commonly used for identifying

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

19 | P a g e

specific resource types in server nodes, run up to 10 times faster with a graph

database in comparison to SQL [7].

A graph database stores information using vertices/nodes and edges/relations. A

graph structure supports:

 Representing data in a natural way, without some of the distortions of the

relational data model

 Apply various types of graph algorithms on these structures. This will help

service mapping algorithm, providing data in a way that is already optimised

for its computation. The graph structure permits the navigation of nodes

following explicit pointers that connect the nodes and to identify the paths

between nodes.

From a database design perspective, using a graph database follows a different

design approach in comparison to relational database designs. The initial focus is on

identifying the nodes within the graph. The NFVI can be decomposed into either

physical or virtual resources which can be mapped directly to a node structure. The

relationships of virtual-virtual, physical-physical and virtual-physical are captured in

the relevant connections between the resources. Virtual resources have an implicit

dependency on physical resources, i.e. a virtual resource cannot exist without a

physical host. Therefore in a graph construct, virtual resources must at some point in

the graph be connected to a physical resource.

The use of graphs also maps conveniently to the hierarchical structure of compute,

storage and network elements within the NFVI. Two approaches can be adopted in

design of the graphs, namely a top down or a bottom up approach. A top down

approach was adopted given that a server is the key autonomous unit within the

NFVI. A server can then be broken down into its constituent components, while

maintaining the relationship among components using directed acyclic graphs. For

example in Figure 3-5 a simple graph for a server is shown, where the server has two

sockets, each socket has a CPU and each CPU has multiple cores.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

20 | P a g e

Figure 3-5 Simple server resource graph.

A similar process is adopted for virtual resources which have a similar hierarchical

construct.

As shown in Figure 3-5, nodes in a graph database have explicit relationships

between themselves. The relationship indicates the directed, semantically relevant

connections, e.g. “has a” “runs on” “on network” etc. between node-entities. A

relationship comprises of a direction (indicated by the direction of the arrow), a type,

a start node, and an end node.

3.4.1.3. Listener Services Design

Listener services are processes that receive or intercept specific messages of interest

and carry out some predefined action on the message, such as forwarding the

message to another service or location. In order to ensure flexibility, the design of a

listener service needs to utilise a configuration file in order to adapt the behaviour of

the service to evolving system designs and upgrades. In the design of the repository

subsystem the need for two listener services was identified. The listener services

required in the design are as follows:

 EPA Agent listener service

 OpenStack Message Queue listener service

The function of the EPA agent listener service is to receive messages with platform

information updates from the EPA agents running on the compute nodes. One

listener service is required per NFVI. All EPA agents running in the NFVI need to be

able to communicate with the listener service.

The OpenStack listener service is designed to intercept messages from the OpenStack

notification.info queue and to notify the EPA Controller that a change in the

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

21 | P a g e

infrastructure landscape of the NFVI has occurred which must be reflected in the

infrastructure repository database. The design of the listener service plays a central

role in maintaining the concurrency of the information stored in the resource

repository data. It is designed in a flexible and scalable manner by implementing

handlers for each specific category of message (e.g. compute.*, volume.* etc.) relating

to resource updates such as the creation of a new VM etc.

3.4.1.4. EPA Controller Design

The goal of the controller component is to provide a centralised actuation point for

listener service notifications as shown in Figure 3-6. A controller resides on each PoP

in the T-NOVA system.

The main design goals of the controller are:

 Persistence and consistency of infrastructure information

 Requires no user interaction

 Provides asynchronous response to listener notifications to support

scalability

 Processes data contained in different file formats which are published by the

EPA agents.

Figure 3-6 Controller system overview

To ensure persistence and consistency, the controller is responsible for managing the

connection to the infrastructure repository database. The controller is also

responsible for initialising the infrastructure repository database at start-up before

starting the listener services so that any update to the database committed by the

listener services will be consistent with current state of the infrastructure landscape.

The controller also has responsibility for processing files containing infrastructure

information received from the EPA agents with varying formats. After starting the

Controller, it has responsibility for orchestrating in an autonomous manner its

components without the need for user interaction.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

22 | P a g e

3.4.1.5. Middleware API Layer Design

The middleware layer is the infrastructure repository subsystem component that

provides the Northbound REST API to the functional components of the T-NOVA

Orchestration layer such as the Orchestrator manager, resource mapping module etc.

Its design is primarily driven by analysis of the requirements outlined in section 2.

The middleware layer needs to provide a common interface to all the PoP level

databases within the T-NOVA system as shown in Figure 3-7. From the perspective of

a component using the interface the location of the data and the underlying

complexity in forming the query response is abstracted as per requirement VIM4 (see

Table 2-1). In order to support common access to all PoPs, the relevant service

endpoints need to be stored within the middleware layer. Secondly the middleware

layer needs to store information regarding the network ingress and egress endpoints

of the PoPs comprising the T-NOVA system and parametric data relating to the links

e.g. available bandwidth available. Therefore the inclusion of a database was

considered a necessary element in the design. Additional API calls which support the

creation of new PoP entries or updating existing entries are required as per

requirement IR02.

Figure 3-7 Middleware layer design

The primary function of the middleware APIs is to support retrieval of information

from the repository databases located at each NFVI-PoP. The interface does not

support other actions on the PoP level resource repository databases such as

inserting, updating or deleting information in the NFVI-PoP level databases. To be

compliant with the design decisions of Task 3-1 a REST type approach to the design

of the interfaces was required. However additional requirements in the interface

design were also considered. The middleware API also provides an agnostic

repository implementation interface to the dependent Orchestrator components as

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

23 | P a g e

per requirement IR06. The design of the interfaces therefore considered approaches

such as OCCI to fulfil this requirement.

Another requirement that the design considered was exposing hardware capabilities

collected at PoP level by the agents as per requirement H.7 (see table 2-1). This

requirement necessitates the discovery of the features and functionality provided by

resources (compute, accelerators, storage and networking) and exposing this

information to the Orchestration layer.

Finally the middleware design needed to support the common service authentication

mechanism (Gatekeeper) used by the T-NOVA Orchestration layer. All API calls

received by the middleware layer must be authenticated before execution.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

24 | P a g e

4. INFRASTRUCTURE REPOSITORY SUB-SYSTEM

IMPLEMENTATION

This section describes the implementation details of the infrastructure repository sub-

system and its functional components. The key interactions between the EPA Agent,

listener services (OpenStack and EPA Agent), EPA Controller, repository database and

API middleware layer components are shown in Figure 4-1. The key information flows

between components and the other T-NOVA Orchestrator subsystems such as the

mapping service are also shown. The components represented as grey blocks are

open source software components used to build the VIM at each T-NOVA NFVI-PoP.

The controller is designed to use these components for retrieving virtual resources

information. The repository sub-system components are presented as blue blocks.

EPA agents running on each compute node of the NFVI reports hardware data to the

controller via a RabbitMQ broker1. The controller, which is subscribed to messages of

interest including those from the EPA agents, intercepts the messages via the

dedicated listener services and uses the messages to trigger updates to the

repository database via the EPA Controller. The dependent Orchestrator subsystem

components interact with the repository via the middleware API layer. In particular

the T-NOVA Orchestration layer retrieves infrastructure information to support both

deployment and management decisions with respect to either new or existing

network services. The T-NOVA Orchestration layer can also use the middleware APIs

to support storage of NFVI-PoP ingress and egress endpoint information via the

middleware layer graph database. Specific API calls are provided to support all

required actions. New PoPs with their WAN link information can be added; existing

PoP information relating to connection attributes can be either updated or deleted. A

description of connections between the infrastructure sub-system components is

provided in Table 4-1.

Figure 4-1 Infrastructure Repository – Key information flows

1
 https://www.rabbitmq.com/

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

25 | P a g e

Table 4.1 EPA Data Flows

Description

1 OpenStack services store information in their respective

MySQL DBs

2 OpenStack services send notification messages to the

RabbitMQ broker containing virtual resources updates

3 EPA Agent sends hardware features data to the

Controller

4 EPA Agent sends a notification to the RabbitMQ broker

when new hardware data is collected.

5 Listener Services intercept message of interest from EPA

agents or OpenStack updates

6 EPA Controller consumes notifications from listener

services to trigger resource repository DB updates

7 EPA Controller retrieves virtual resources information by

querying OpenStack MySQL services DBs

8 EPA Controller persists infrastructure information to the

resource repository DB

9 Middleware retrieves network topology information from

OpenDaylight Controller.

10 Middleware retrieves infrastructure information from the

EPA DB based on the API call used

11 Middleware stores and retrieve PoPs information using

the PoPs DB

12 T-NOVA Orchestrator retrieves infrastructure information

and stores PoP and connections information using the

Middleware API

Each component is implemented as a Python module and configured using

standalone configuration files. A detailed description of each component is provided

in the following sub sections.

4.1. Enhanced Platform Awareness Agent Implementation

An EPA agent runs on each compute node within the NFVI-PoP. The agent is

responsible for collecting information relating to the hardware features of the

physical compute node hosts, and sending that information to the EPA Controller

which persists the received information to the repository database. The majority of

the compute node information is collected using the open source hardware locality

software package [8]. This package provides an abstraction of the hierarchical

topology of a compute node’s architecture. It gathers various system attributes like

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

26 | P a g e

cache and memory information, as well as information regarding I/O devices such as

network interfaces, GPUs etc. (see Figure 4-2). The tool supports most of the modern

operating systems ensuring good interoperability.

 <topology>

 <object type="Machine" os_index="0">

 <info name="DMIProductName" value="ProLiant DL380 Gen9"/>

 <info name="DMIProductVersion" value=""/>

 <info name="DMIChassisVendor" value="HP"/>

 <info name="DMIChassisType" value="23"/>

 <info name="DMISysVendor" value="HP"/>

 <info name="Backend" value="Linux"/>

 <info name="OSName" value="Linux"/>

 <info name="OSRelease" value="3.13.0-44-generic"/>

 <info name="OSVersion" value="#73-Ubuntu SMP Tue Dec 16 00:22:43 UTC 2014"/>

 <info name="Architecture" value="x86_64"/>

 <distances nbobjs="2" relative_depth="1" latency_base="10.000000">

 <latency value="1.000000"/>

 <latency value="2.100000"/>

 <latency value="2.100000"/>

 <latency value="1.000000"/>

 </distances>

 <object type="NUMANode” local_memory="33609957376">

 <page_type size="4096" count="8205556"/>

 <page_type size="2097152" count="0"/>

 <object type="Socket">

 <info name="CPUModel" value="Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz"/>

 </object>

 <object type="Bridge" os_index="0" bridge_type="0-1" depth="0"

bridge_pci="0000:[00-13]">

 <info name="PCIVendor" value="Intel Corporation"/>

 <info name="PCIDevice" value="Wellsburg PCI Express Root Port #5"/>

 <object type="PCIDev" name = "Broadcom Corporation NetXtreme BCM5719

Gigabit Ethernet PCIe" pci_busid="0000:02:00.0">

 <info name="PCIVendor" value="Broadcom Corporation"/>

 <info name="PCIDevice" value="NetXtreme BCM5719 Gigabit Ethernet PCIe"/>

 <object type="OSDev" name="em1" osdev_type="2">

 <info name="Address" value="c4:34:6b:b8:52:d0"/>

 </object>

 ...

 </object>

 </object>

 ...

 </object>

</topology>

Figure 4-2 Hardware locality data extract

Additional cpu specific information is collected (for Linux machines only) using the

output of the command:

cat /proc/cpuinfo

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

27 | P a g e

The output generated and collected by the EPA agent is shown in Figure 4-3.

processor : 41

vendor_id : GenuineIntel

cpu family : 6

model : 63

model name : Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz

stepping : 2

microcode : 0x2b

cpu MHz : 1200.976

cache size : 35840 KB

physical id : 0

siblings : 28

core id : 14

cpu cores : 14

apicid : 29

initial apicid : 29

fpu : yes

fpu_exception : yes

cpuid level : 15

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov

pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp

lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc

aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3

fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt

tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm ida arat epb xsaveopt

pln pts dtherm tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2

smep bmi2 erms invpcid

bogomips : 5194.05

clflush size : 64

cache_alignment : 64

address sizes : 46 bits physical, 48 bits virtual

power management:

Figure 4-3 Output of CPUInfo command

The agent is also designed to detect the presence of DPDK compatible NICs using a

script from the DPDK library (dpdk_nic_bind.py). The output of this script is shown in

Figure 4-4.

PCI addr

0000:05:00.1

0000:05:00.0

Figure 4-4 Output of DPDK script

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

28 | P a g e

The agent also identifies the presence of SR-IOV capable NICs and the number of

allocated and unallocated virtual functions2 for each SR-IOV NIC as shown in Figure

4-5. The NIC in this example is dual channel NIC which can support up to 63 virtual

functions or channels. However one channel has been configured to support only 25

virtual functions while the second channel is configured to support no virtual

functions.

PCI addr numvfs totvfs

0000:05:00.1 25 63

0000:05:00.0 0 63

Figure 4-5 Output of SR-IOV script showing total number of SR-IOV NIC virtual

functions

SR-IOV capabilities are discovered using a custom Python script. First the script

parses the output of the list PCI devices command (lspci) and extracts (if any) the pci

address of each SR-IOV device. Then the script extracts additional information about

the SR-IOV card (number of available/allocated SR-IOV virtual functions) using the

following two commands:

cat /sys/bus/pci/devices/0000\: + pci_address + /sriov_numvfs

cat /sys/bus/pci/devices/0000\: + pci_address + /sriov_totalvfs

Information collected by hwloc [9] is written to an XML file while information from

cpuinfo, dpdk_nic_bind.py and the SR-IOV script are written to text files. All files are

sent to the EPA controller using a secure shell (ssh) connection. When a file is sent to

the controller the agent also sends a message to the controller using RabbitMQ to

notify the controller via the EPA listener service a new file has been sent, so the

controller can parse the file and update the infrastructure repository database.

Notifications are sent to the RabbitMQ broker of the VIM’s OpenStack instance using

Pika3. Pika is a Python implementation of the AMQP 0-9-1 protocol. The execution life

cycle of the agent is shown in Figure 4-6.

2
 Virtual Functions (VFs) are simple PCIe functions that contain all the resources necessary for

I/O but have minimal set of configuration resources.
3
 https://pika.readthedocs.org/en/0.9.14/

https://pika.readthedocs.org/en/0.9.14/

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

29 | P a g e

Figure 4-6 EPA Agent execution flow diagram

When the controller receives a message notification via the EPA listener service from

an EPA agent, it parses the received files and updates the information stored in the

infrastructure repository database.

4.2. Infrastructure Repository Database Implementation

The repository database is implemented as a graph database using Neo4j4. The 2.1.7

community version of the database was used for implementation purposes. Neo4j is

an ACID-compliant database (Atomicity, Consistency, Isolation, and Durability). All

changes in the database must be performed in a transaction, which checks for data

validity before storing. For example it will check relationship consistency ensuring

that the specified start and end nodes exist. The isolation property ensures that

parallel transactions do not influence each other. The query language used to retrieve

data from the database is called Cypher. It is a declarative graph query language that

allows for expressive querying of the graph database.

Let’s assume that in the repository database information relating to an OpenStack

VM stack is stored. The stack has a UUID=7fe39371-1379-4162-9deb-e904c4f2dc43,

4
 http://neo4j.com

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

30 | P a g e

composed by one VM and a virtual network and you want to know on which host the

VM has been deployed. Using the OpenStack API, this query would be complicated,

requiring interacting with multiple API’s from different services. However using the

repository database with the following query the required information can be

retrieved:

Match stack-[r]->resources-[s]->hypervisor-[u]->host where

stack.openstack_uuid='7fe39371-1379-4162-9deb-e904c4f2dc43' return stack,

resources, hypervisor, host

The query returns the following graph:

Figure 4-7 Cypher Query result

The graph, shown in Figure 4-7, is composed by:

 Nodes that represent the virtual resources (violet nodes). These virtual

resources comprise a stack which is connected to a virtual network and to a

VM on that network. The VM is connected to the network through a neutron

port that represents its tap interface.

 The hypervisor where the VM has been deployed (green nodes).

 The physical host, having a hostname called compute1, where the hypervisor

is running (blue nodes).

The controller and the middleware layer APIs access the infrastructure repository

database using Py2neo5 which is a client library that enables Python applications to

work with Neo4j. In particular the controller and middleware share a Python module

5
 http://py2neo.org/2.0/

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

31 | P a g e

called neo4j_resources that wraps the Py2neo API to perform required actions before

storing or updating new nodes or relationships in the database. All resources in the

repository database are indexed using its UUID and label (node category) to boost

performance.

The methods implemented are outlined in Table 4-2. Note: A graph_db is an instance

of the Graph class from the py2neo library.

Table 4.2 Methods for Repository Database updates

Method Description

create_index(graph_db, label) Create an index in the database for the given

label.

add_node(graph_db, index, timestamp,

properties=None)

Add a new node with the given index, the

given timestamp and optionally the given

properties.

update_node(graph_db, index, timestamp,

properties=None)

Update a node having the given index, with

the new timestamps and optionally

properties

delete_node(graph_db, index, node=None) Delete the node with the given index. If you

have already an instance pointing to the

node, you can pass it. In this case index will

be ignored.

add_edge(graph_db, start_node, end_node,

timestamp, label, properties=None)

Add a relation between the start node and

the end node, using the given label and

timestamp and optionally properties.

delete_edge(graph_db, start_node,

end_node)

Delete the relation between start_node and

end_node

update_edge(graph_db, start_node,

end_node, timestamp, label,

properties=None)

Update a relation between the start node and

the end node, using the given label and

timestamp and optionally properties.

get_edges_by_node(graph_db, index,

node=None)

Retrieve a list of relations for the given node,

specified by index or by an instance of the

node itself.

get_neighbours(graph_db, index,

node=None)

Retrieve a list of nodes linked to the given

node both with an ingress or egress relation.

The node can be specified by index or by an

instance of the node itself.

remove_neighbours(graph_db, index,

node=None, neighbour_type=None)

Delete nodes linked to the given node both

with an ingress or egress relationship. The

node can be specified by index or by an

instance of the node itself.

get_node_by_index(graph_db, index) Retrieve a node given its index

get_node_by_property(graph_db, label,

property_key, property_value)

Retrieve the first node with the given

property and label.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

32 | P a g e

get_edge(graph_db, start_node, end_node) Retrieve the first relation between start and

end node.

remove_nodes_by_property(graph_db, label,

property_key, property_value)

Delete all nodes having the given label and

property.

All functions can be called multiple times on the same data and will return the same

output. In this way the design of components that use the library has been simplified.

With a graph database each resource is characterised by multiple links with other

resources. For example when a user deploys a new stack composed by two VMs, this

will be represented in the database as a Stack node connected to two VMs where

each VM is connected to a port that in turn is connected to a virtual network. The two

VMs will also be connected to the hypervisor where the VMs are running on. Each

hypervisor is connected to a physical machine. If a VM requiring an SR-IOV NIC is

deployed, the related port will be connected to the physical network card that

supports SR-IOV.

In order to support consistency between the resource references used in the

infrastructure repository and those used by the metric monitoring system being

developed by the task 4.4 in WP4, the following conventions were adopted.

 Physical resources are identified by a combination of OpenStack hostname +

kind (see Table 4.3).

 Virtual resources are identified by OpenStack UUID.

 Physical network resource by OpenFlow ID.

Use of these conventions ensures that the Orchestration layer can correlate metrics to

the corresponding resources in the repository and vice versa.

Additionally, to standardise the naming convention of the T-NOVA PoPs the

following convention was adopted.

 Country Code - Two letter code as per ISO 3166

(http://www.iso.org/iso/home/standards/country_codes.htm).

 City location code as per UN/LOCODE

(http://www.unece.org/cefact/locode/service/location.html) and a 4 digit

datacentre number (this could be increased if it makes sense).

An example of the convention applied to the Intel data centre in Leixlip, Ireland is:

e.g. IE-LEX-0001

The rational for this standardisation was to have short but meaningful names in order

to facilitate shorter response strings to resource GET API calls where the source PoP is

included in the response.

4.3. Listener Services Implementation

To ensure data concurrency in the repository database, updates by the EPA Controller

are initiated via the Events Listener Service module. This module is connected to the

RabbitMQ broker and consumes messages from the OpenStack “notifications.info”

http://www.iso.org/iso/home/standards/country_codes.htm
http://www.unece.org/cefact/locode/service/location.html

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

33 | P a g e

queue. An Event in OpenStack represents the state of an object in an OpenStack

service (such as an Instance in Nova, or an Image in Glance) at a point in time when

something of interest has occurred. In general, Events let you know when something

has changed about an object in an OpenStack system, such as the resizing of an

instance, or the creation of an image. Events are primarily created via the notifications

system in OpenStack. OpenStack services, such as Nova, Glance, Neutron, etc. send

notifications in a JSON format to the message queue when a notable action is taken

by that system. The Events Listener consumes these notifications from the message

queue, and processes them. To enable the notifications service in OpenStack the

service configuration file must be updated as shown in Figure 4-8.

File: nova.conf (controller and computes)

[DEFAULT]

default_notification_level=INFO

notification_topics=notifications

notification_driver=nova.openstack.common.notifier.rpc_notifier

notify_on_state_change = vm_and_task_state

instance_usage_audit=True

File: cinder.conf (controller)

[DEFAULT]

default_notification_level=INFO

notification_topics=notifications

notification_driver=cinder.openstack.common.notifier.rpc_notifier

File: glance-api.conf (controller)

[DEFAULT]

default_notification_level=INFO

notification_topics=notifications

notification_driver=glance.openstack.common.notifier.rpc_notifier

File: heat.conf (controller)

[DEFAULT]

default_notification_level=INFO

notification_topics=notifications

notification_driver=heat.openstack.common.notifier.rpc_notifier

File: neutron.conf (controller)

[DEFAULT]

default_notification_level=INFO

notification_topics=notifications

notification_driver =

neutron.openstack.common.notifier.rpc_notifier

Figure 4-8 OpenStack Notification Configurations

After adding these configurations, all the OpenStack services must be rebooted to

start producing notifications. All the notifications have a field called event_type which

is based on a composite string with a dot delimiter defining what event has occurred.

For example the notifications produced by Nova related to virtual machines’ events

will have event_type compute.instance.* (e.g. compute.instance.create.end,

compute.instance.delete.end, compute.instance.update etc.)

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

34 | P a g e

The general architecture of the OpenStack Events Listener is shown in Figure 4-9. A

component called Notifications consumer is responsible for:

 Creating the connection to the RabbitMQ Broker.

 Registering itself as a consumer for the messages in the notification queue.

 Providing registration functionalities to permit the handlers to register

themselves for a specific event type patterns.

Figure 4-9 Events Listener Architecture

After the handler is registered for a specific pattern, it starts to receive the desired

events. A new decorator6 [10] called register_handler was also defined. The decorator

takes the function, stores a reference to the function in a hash, using events as the

key of the hash. The reference is then used whenever an event occurs connected to

the key against which the function reference was stored. For example a Nova event

handler would have the following format:

CREATE_EVENT = [

 “'compute.instance.create.end'

]

UPDATE_Events = [

 'compute.instance.resize.revert.end',

 'compute.instance.finish_resize.end',

 'compute.instance.rebuild.end',

 'compute.instance.update',

 'compute.instance.exists'

]

6
 “A decorator is the name used for a software design pattern. Decorators dynamically alter the

functionality of a function, method, or class without having to directly use subclasses or change

the source code of the function being decorated.”

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

35 | P a g e

DELETE_EVENTS = [

'compute.instance.delete.end'

]

Class NovaHandler(OpenStackHandler):

 @register_handler(UPDATES_EVENTS)

 def handle_instance_update(self, graph_db, body):

 # Processing VMs update events

 @register_handler(CREATE_EVENTS)

 def handle_instance_create(self, graph_db, body):

 # Processing VMs create events

 @register_handler(DELETE_EVENTS)

 def handle_instance_delete(self, graph_db, body):

 # Processing VMs delete events

The common mechanisms for processing an event are:

 Querying OpenStack Service database to retrieve additional information

about the resource that generated the event. This functionality was

implemented using MySQL Connector/Python7 which an open source API that

is compliant with the Python Database API Specification v2.0. It is written in

pure Python and does not have any dependencies except for the Python

Standard Library.

 Update the repository database.

The EPA Agent Listener is implemented in a similar manner to the OpenStack listener

service. The EPA agent listener is however specifically subscribed to the agents.info

queue. This queue is configured in the RabbitMQ broker to specifically handle

messages sent by the EPA agents. The queue is created during the installation

process of EPA agent listener. The listener when subscribed to the queue waits for

hardware information about new compute nodes added to the PoP or any updates

relating existing nodes in the form of hardware changes or upgrades. The messages

sent by the EPA Agents have an event type field that can have values agent.new or

agent.update. The message also has a field where the path to the files sent by the

agent are to the EPA Controller are stored. Once the EPA Agent Listener receives a

new message, it informs the EPA Controller that new files require processing and

provides the EPA Controller with the location of the files that must be processed. The

specifics of how the EPA Controller service is implemented are outlined in the next

section.

4.4. EPA Controller Service Implementation

The EPA controller service manages and orchestrates the infrastructure repository

database, EPA agent and OpenStack notification listeners. At start-up the controller is

responsible for initialising the infrastructure repository database by removing all

7
 http://dev.mysql.com/doc/connector-python/en/

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

36 | P a g e

previously present nodes and relationship entries (if any). The controller then

populates the database by extracting data from the OpenStack service databases.

When this step is completed the database contains all nodes and relations that

represent the current OpenStack view of the datacentre, i.e. a screenshot of the

current infrastructure. This establishes a ground truth state which can then be

updated with new data produced by the two listeners (EPA agent and OpenStack).

The set of operations performed in the initialisation of the EPA database are shown in

Figure 4-9. Once the EPA database is initialised, the controller starts the Agent

notification listeners.

Figure 4-9 EPA database initialisation flow diagram

When a new Agent notification is received, the controller takes the following actions:

1. Collects the files sent by the EPA Agent

2. Delete all nodes and relations from the database related to the hardware

resources of the host that produced the notification.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

37 | P a g e

3. Parses the HW locality file and converts the xml structure to a graph structure

(for example see Figure 5-3).

4. Updates the Process Unit nodes with information contained in the CPU

information file.

5. Updates the OS Network device with information contained in the DPDK

information file.

6. Updates the OS Network device with information contained in the SR-IOV

information file.

At the end of that process, the infrastructure repository database contains all the

hardware information with respect to the host that sent the notification. Step 2

ensures that if a host sends multiple notifications, the database will not contain

duplicate nodes for resources belonging to the same host. After starting the EPA

Agent notification listener, the Controller starts the OpenStack Notification listener

which keeps the information stored in the repository database up to date, using the

mechanism outlined in Section 4.3.

4.5. Middleware API Layer Implementation

A key requirement for the infrastructure repository is to create a unified view of the

T-Nova infrastructure environment composed by multiple Points of Presence (PoPs).

Each PoP is a datacentre managed by a VIM based on OpenStack for compute and

storage resources and OpenDaylight for the physical network topology. All

infrastructure information is stored in the repository database except for the network

topology which is retrieved directly from OpenDaylight via its REST API’s. T-Nova

uses a sharing-nothing approach, which means that the OpenStack and

OpenDaylight instances are completely isolated. To follow this approach, each PoP

has its own infrastructure database, where the infrastructure information for that PoP

is stored (at PoP level). To achieve a unified view of the infrastructure information

among multiples PoPs, the infrastructure repository implements a middleware layer.

The main responsibilities of the middleware layer are:

 Defining a common view for all information sources (OpenStack, EPA Agents

and OpenDaylight);

 Dispatching user requests to the required PoP.

The middleware layer also has a database (at the middleware layer) where

information relating to the PoPs in the T-NOVA system and the network links

between them are stored.

Each PoP entry in the middleware layer database contains the following information:

 Name

 ID

 EPA database URL

 OpenDaylight URL

 OpenDaylight username

 OpenDaylight password

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

38 | P a g e

 Longitude

 Latitude

Each PoP entry also contains the URLs of the two sources of information at the PoP

level (resource repository database URL and OpenDaylight URL).

The middleware layer exposes the API calls to manage the PoPs (Create, Retrieve,

Update, Delete). When a request is sent to the middleware, the ID of the PoP that the

user wants to access must be specified. In this way the middleware layer can retrieve

the URLs and query the appropriate PoP level information sources.

The consistency of the OpenStack and EPA agent information contained in the

infrastructure database is maintained using the listener services and EPA controller

previously described. This approach cannot be used for physical network information,

as OpenDaylight does not provide an equivalent messaging mechanism. For this

reason when a T-NOVA Orchestration layer component requires information related

to the physical network topology, OpenDaylight’s (at the PoP level) REST API is called,

however the specifics of the OpenDaylight API call are abstracted by the OCCI

interface from the component making the request. From a requestor perspective the

call for the physical network information appears to be the other middleware GET API

calls. The database at the middleware layer also contains information regarding the

connections between PoPs. For that reason, a graph database based on NEO4j was

again selected for the implementation of this database. The PoPs link information can

contain parameters such as currently available bandwidth and total link bandwidth

when available. This information can for example used by the Service Mapping

together with other PoP information to determine which PoP a VNF or network

service should be deployed on, considering the network flows between multiple VNFs

that belong to a given Network Service (NS).

The middleware is implemented in Python as a standalone application. The

information required to install it are:

 Neo4j database URL.

 Neo4j database credentials.

 Port number used by the middleware to expose the service.

4.5.1. OCCI Compliant API’s

The middleware layer exposes an OCCI8 compliant interface to dependent functional

entities within the T-NOVA Orchestrator. An OCCI approach was adopted as it builds

on work carried out by the Mobile Cloud Networking (MCN) FP7 project which

utilised OCCI interfaces in their system design and implementation [11]. It also

provides abstraction of the underlying implementation of the infrastructure

repository thus supporting easier reuse of the Orchestrator components by third

parties with an alternative repository solution if required.

OCCI is a RESTful protocol and API for various kinds of management tasks. OCCI was

originally initiated to create a remote management API for IaaS model-based

services. These APIs support the development of interoperable tools for common

8
 http://occi-wg.org/about/specification/

http://occi-wg.org/about/specification/

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

39 | P a g e

tasks including deployment, autonomic scaling and monitoring [1]. The middleware

interface was implemented using the pyssf package9. In accordance with the OCCI

specification each resource in the repository is characterised by a kind. The kind is

defined by a category in the OCCI model. This kind is immutable and specifies a

resource's basic set of characteristics. This includes its location in the hierarchy,

attributes, and applicable actions. The kinds exposed by the middleware layer are

outlined in Table 4.3.

Table 4.3 Middleware API Kinds

Kind Endpoint url Description Actions

PoP /pop/ Point of presence
GET, POST,

PUT, DELETE

PoP link /pop/link/
Link between two

POPs

GET, POST,

PUT, DELETE

Stack /pop/{pop_id}/stack/ OpenStack Stack GET

Stack link /pop/{pop_id}/stack/link/
Link between a stack

and its resources
GET

VM /pop/{pop_id}/vm/ Virtual Machine GET

VM link /pop/{pop_id}/vm/link/

Link between a vm and

its resources (Volume,

Port etc.)

GET

Volume /pop/{pop_id}/volume/ Cinder volume GET

Volume

link
/pop/{pop_id}/volume/link/

Link with cinder

volume service and

snapshot

GET

Net /pop/{pop_id}/net/ Neutron network GET

Port /pop/{pop_id}/port/ Neutron port GET

Port link /pop/{pop_id}/port/link/

Link between port,

networks, floating IP,

pci device (in case of

PCI passthrough)

GET

Snapshot /pop/{pop_id}/snapshot/ Cinder snapshot GET

Floating IP /pop/{pop_id}/floatingip/ Neutron Floating IP GET

Floating IP

link
/pop/{pop_id}/floatingip/link/

Link between floating

ip and its network
GET

Router /pop/{pop_id}/router/ Neutron virtual router GET

Router link /pop/{pop_id}/router/link/ Link between router GET

9
 http://pyssf.sourceforge.net/

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

40 | P a g e

and its interfaces

Controller

Service

/pop/{pop_id}/controller-

service/

OpenStack Service

(Nova, Glance, Cinder,

Heat, Neutron)

GET

Controller

Service link

/pop/{pop_id}/controller-

service/link/

Link between

OpenStack service and

the machine where is

hosted

GET

Hypervisor /pop/{pop_id}/hypervisor/
Hypervisor used by

Nova Compute
GET

Hypervisor

link
/pop/{pop_id}/hypervisor/link/

Link between

hypervisor and the

machine where it is

running on

GET

Cinder

Volume
/pop/{pop_id}/cinder-volume/ Cinder Volume service GET

Cinder

Volume

link

/pop/{pop_id}/cinder-

volume/link/

Link between Cinder

Volume service and

the machine where it is

running on

GET

Machine /pop/{pop_id}/machine/ Physical machine GET

Machine

link
/pop/{pop_id}/machine/link/

Link between Machine

and NUMA node (if

NUMA architecture) or

Bridge and Socket (if

No NUMA

architecture)

GET

NUMA

Node
/pop/{pop_id}/numanode/ NUMA node GET

NUMA

node link
/pop/{pop_id}/numanode/link/

Link between NUMA

node and Bridge or

Socket

GET

PCI Bridge /pop/{pop_id}/bridge/ PCI Bridge GET

Bridge link /pop/{pop_id}/bridge/link/

Link between PCI

bridge and PCI devices

connected to it

GET

PCI Device /pop/{pop_id}/pcidev/ PCI Device GET

PCI Device

link
/pop/{pop_id}/pcidev/link/

Link between PCI

Device and respective

OS device

GET

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

41 | P a g e

OS Device /pop/{pop_id}/osdev/

OS Device (allowed

type: Compute,

Network, Storage)

GET

OS Device

link
/pop/{pop_id}/osdev/link/

Right now only

Network device can

have connection to

SDN physical switch

GET

Socket /pop/{pop_id}/socket/ Socket GET

Socket link /pop/{pop_id}/socket/link/
Link between socket

and cache node
GET

Cache /pop/{pop_id}/cache/ Cache GET

Cache link /pop/{pop_id}/socket/link/

Link to other cache

nodes of lower level or

to the Core

GET

Core /pop/{pop_id}/core/ Physical Core GET

Core link /pop/{pop_id}/core/link/
Link to Process Units

node
GET

PU /pop/{pop_id}/pu/ Processing unit GET

Switch /pop/{pop_id}/switch/ Physical SDN switch GET

Switch link /pop/{pop_id}/switch/link/

Link between Switch

and its interfaces

controlled by ODL

GET

Switch

Interface

/pop/{pop_id}/switch-

interface/

Switch interface

controlled by ODL

controller

GET

Switch

Interface

link

/pop/{pop_id}/switch-

interface/link/

Link between Switch

Interface and Network

card of Physical Node

GET

A complete API reference document is available particularly for partners working on

integration of Orchestration layer components with infrastructure repository

subsystem. Most of kinds allow only the retrieve action, as the infrastructure

repository is updated automatically.

Only PoP WAN related information is fully managed by the Orchestrator. To add a

new PoP the Orchestration layer uses the following call:

POST http://middleware_url:<middleware_port>/pop/

--header "Accept: application/occi+json"

--header "Content-Type: text/occi" --header 'Category: pop;

scheme="http://schemas.ogf.org/occi/epa#";class="kind"'

-d 'X-OCCI-Attribute: occi.epa.pop.name = "GR-ATH-0001"

http://localhost:8888/pop/
http://schemas.ogf.org/occi/epa
http://schemas.ogf.org/occi/epa

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

42 | P a g e

 X-OCCI-Attribute: occi.epa.pop.lat = 53.3720513

 X-OCCI-Attribute: occi.epa.pop.lon = -6.5130686999999625

 X-OCCI-Attribute: occi.epa.pop.graph_db_url

"http://neo4j:intel_tnova@demokritos.com:7474/db/data/"

 X-OCCI-Attribute: occi.epa.pop.odl_url =

 "http://demokritos.com:9001/restconf/operational/"

 X-OCCI-Attribute: occi.epa.pop.odl_name = "admin"

 X-OCCI-Attribute: occi.epa.pop.odl_password="admin"'

For each kind there are least two calls available:

 One to retrieve the list of resources of the given kind

 One to retrieve a single resource and its attributes.

For example:

Retrieving a list of virtual machines:

(Note: The PoP ID must be included in the request of the call)

GET http://middleware_url:<middleware_port>/pop/55ef7cce-

1e9b-4b8f-9839-d40ceeb670f4/vm/

--header "Accept: application/occi+json"

Extract from response:

[

 {

 "actions": [],

 "attributes": {},

 "identifier": "/vm/ee3fa7b8-ad1f-46c7-8944-b7dc2640dcaa",

 "title": "Virtual Machine"

 },

 "links": [

 {

 "actions": [],

 "attributes": {},

 "identifier": "/vm/link/ee3fa7b8-ad1f-46c7-8944-b7dc2640dcaa->f18a3c74-e3de-

4271-9284-e47af46471ba",

 "source": "/vm/ee3fa7b8-ad1f-46c7-8944-b7dc2640dcaa",

 "target": "/port/f18a3c74-e3de-4271-9284-e47af46471ba"

 },

 {

 "actions": [],

 "attributes": {},

 "identifier": "/vm/link/ee3fa7b8-ad1f-46c7-8944-b7dc2640dcaa->hypervisor-2",

 "source": "/vm/ee3fa7b8-ad1f-46c7-8944-b7dc2640dcaa",

 "target": "/hypervisor/hypervisor-2"

 }

],

 "mixins": []

 },

 {

 "actions": [],

 "attributes": {},

 "identifier": "/vm/cf3365f6-ee18-4f54-9acd-38f8855249ab",

 },

mailto:intel_tnova@demokritos.com
http://localhost:9001/restconf/operational/
http://middleware_url:%3cmiddleware_port%3e/pop/55ef7cce-1e9b-4b8f-9839-d40ceeb670f4/vm/
http://middleware_url:%3cmiddleware_port%3e/pop/55ef7cce-1e9b-4b8f-9839-d40ceeb670f4/vm/

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

43 | P a g e

 "links": [

 {

 "actions": [],

 "attributes": {},

 "identifier": "/vm/link/cf3365f6-ee18-4f54-9acd-38f8855249ab->3f98d78e-a817-

418a-aeee-44b0edf14169",

 "source": "/vm/cf3365f6-ee18-4f54-9acd-38f8855249ab",

 "target": "/port/3f98d78e-a817-418a-aeee-44b0edf14169"

 },

 {

 "actions": [],

 "attributes": {},

 "identifier": "/vm/link/cf3365f6-ee18-4f54-9acd-38f8855249ab->hypervisor-2",

 "source": "/vm/cf3365f6-ee18-4f54-9acd-38f8855249ab",

 "target": "/hypervisor/hypervisor-2"

 }

],

 "mixins": []

 },

....]

Retrieving the details of a single virtual machine:

GET http://middleware_url:<middleware_port>/pop/55ef7cce-1e9b-4b8f-9839-

d40ceeb670f4/vm/ee3fa7b8-ad1f-46c7-8944-b7dc2640dcaa

--header "Accept: application/occi+json"

Extract from response:

{

 "actions": [],

 "attributes": {

 "occi.epa.attributes": "{\"vm_state\": \"active\", \"internal_id\": null,

\"availability_zone\": \"nova\", \"ramdisk_id\": \"\", \"instance_type_id\": \"2\",

\"cleaned\": 0, \"vm_mode\": null,

\"reservation_id\": \"r-r1fob1wj\", \"disable_terminate\": 0, \"user_id\":

\"d719c3652ff64911a3c896e9c11f53e3\", \"default_swap_device\": null,

\"hostname\": \"test-ee3fa7b8-ad1f-46c7-8944-b7dc2640dcaa\", \"launched_on\":

\"controller\", \"display_description\": \"test\",

\"power_state\": 1, \"default_ephemeral_device\": null, \"progress\": 0,

\"project_id\": \"b6488d1a9ff34bcfb3f95d0d4399b0b3\", \"root_device_name\":

\"/dev/vda\", \"node\": \"controller\",

\"ephemeral_gb\": 0, \"access_ip_v6\": null, \"access_ip_v4\": null, \"kernel_id\": \"\",

\"key_name\": \"odl-keypair\", \"image_id\": \"83da27be-a376-4920-ab3a-

812473258cfd\", \"host\": \"controller\",

\"ephemeral_key_uuid\": null, \"task_state\": null, \"shutdown_terminate\": 0,

\"cell_name\": null, \"root_gb\": 20, \"locked\": 0, \"locked_by\": null,

\"launch_index\": 1, \"memory_mb\": 2048, \"vcpus\": 1,

\"architecture\": null, \"auto_disk_config\": 1, \"os_type\": null, \"config_drive\": \"\",

\"ports\": [\"f18a3c74-e3de-4271-9284-e47af46471ba\"]}",

 "occi.epa.category": "compute",

 "occi.epa.hostname": "controller",

 "occi.epa.name": "test-ee3fa7b8-ad1f-46c7-8944-b7dc2640dcaa",

 "occi.epa.pop": "IR-LEX-0001",

http://middleware_url:%3cmiddleware_port%3e/vm/
http://middleware_url:%3cmiddleware_port%3e/vm/

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

44 | P a g e

 "occi.epa.pop_id": "55ef7cce-1e9b-4b8f-9839-d40ceeb670f4",

 "occi.epa.resource_type": "vm",

 "occi.epa.timestamp": 1434536853.240091

 },

 "identifier": "/vm/ee3fa7b8-ad1f-46c7-8944-b7dc2640dcaa",

...}

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

45 | P a g e

5. INFORMATION RESOURCES

The infrastructure repository database contains information on the virtual and

physical resources of a T-NOVA PoP. Each resource is represented in the database as

a node with links to others nodes. The following tables outline the key information

stored with respect to the physical resources (Table 5.1), virtual resources (Table 5.2)

and physical network resources (Table 5.3).

Table 5.1 Physical resources

Type Description Main Attributes

Physical Machine

Each host of the OpenStack

cluster

Operating system

information, hostname,

architecture

Bridge PCI Bridge Type of bridge

Socket CPU socket CPU model supported

Core Core

PU
Process unit Cache size, bogomips,

model, cpu speed

NUMA node
Group of CPU in NUMA

architecture

NUMA node index, local

memory size

Cache

Node representing a cache

memory

Cache type (data or

instruction), size, cache line

size

PCI device

PCI device corresponding to

an OS device. Information

relates to how the device is

seen by the OS

PCI vendor, pci_type

(storage, network, compute),

name

Storage OS Device Storage device like disk Name

Network OS device

Network device like network

card

Name, mac address, SR-IOV

information, DPDK

information

Table 5.2 Virtual Resources:

Type Description Main Attributes

Network Virtual network

Status, DHCP agent,

subnets information,

network type (GRE, VLAN,

VXLAN)

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

46 | P a g e

Port Neutron ports

Driver (OpenDaylight,

openvswitch), mac address,

floating ips, IP address

Floating IP
Neutron floating IP associated

to a Neutron port

Router ID, Fixed Port, IP

Router Neutron Virtual Router
Gateway, status, l3 agent

information

VM Nova virtual machine
Image, flavour, IP

addresses, hostname,

Volume Cinder Volumes
Size, mount point,

attachment information

Stack Heat stack
Template, list of associated

resources, status

Hypervisor Hypervisor used by Nova

Information about running

VMs, supported features

and architecture

Cinder Volume
OpenStack service for Volume

management

Status

Snapshot Cinder volume snapshot
Status, original volume

information

Glance service
Glance API service (image

management)

Endpoints

Heat service
Heat API service (orchestration

management)

Endpoints

Cinder service
Cinder API service (volume

management)

Endpoints

Nova service
Nova controller service (VMs

management)

Endpoints

Neutron service
Neutron controller service

(Network management)

Endpoints

Table 5.3 Physical network resources

Type Description Main attributes

Physical Switch

Physical SDN switch controlled

by OpenDaylight

Manufacturer, switch

features, management IP

address, software version

Switch interface

Physical switch interfaces,

eventually connected to the

hosts network cards

Name, Interface features,

status, received/transmitted

packets, mac address

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

47 | P a g e

To augment the information contained in Tables 5.1-5.3, detail descriptions of the all

the resources types and their attributes have been documented as outlined in Table

5.4.

Table 5.4 Infrastructure database information resource documentation

Document Document #

Enhanced Platform Awareness Database - Physical Resource
Description

T-NOVA WP3-T2-001

Enhanced Platform Awareness Database - Virtual Resources
Description

T-NOVA WP3-T2-002

Enhanced Platform Awareness Database – Physical Network
Resources Description

T-NOVA WP3-T2-003

Enhanced Platform Awareness Database – Resources Links
Description

T-NOVA WP3-T2-004

5.1. Infrastructure Repository Data Model

The purpose of the infrastructure repository data model is to define and organise

how the data elements are extracted from the NFVI-PoP resources and to define how

the data elements relate to one another. In approaching a graph data model the key

question to consider is what domain knowledge will be extracted from the graph. A

key advantage of a graph data model is that it is good at showing how resources are

related to each other; it is also helpful in formulating the likely questions that will be

asked. A graph database takes a different approach to “connection” relationships in

comparison to traditional SQL approaches. The richness and expressive nature of the

relationships between nodes are as important as the actual nodes. This combination

of features provides a convenient mapping to complex systems such as those found

in a NFVI-PoP which can be broken down into layers and inter layer relationships.

The infrastructure repository data model can be broken down into four primary

layers, namely workloads (i.e. virtualised network functions and network services),

virtual resources (e.g. virtual machines, networks), resource virtualisation (e.g.

hypervisor) and finally physical resources (compute, storage and network) as shown

in Figure 5-1. The model also comprehends the relationship between the nodes in

the layers. For example, the connection between VM and hypervisor is “deployed on”

which encapsulates the explicit relationship between the two node types.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

48 | P a g e

Figure 5-1 High level data model for infrastructure repository

In Figure 5-2 the relationship between computes nodes and the physical network is

illustrated. The relevant components in a compute node that are involved in

providing a network connection are shown in the model.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

49 | P a g e

Figure 5-2 Data model for compute and physical network related resources

In Figures 5-3 and 5-4 detail models of both the physical and virtual resources are

presented. In Figure 5-3 the model relates to a two socket server node with a NUMA

implementation.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

50 | P a g e

Figure 5-3 Data model for compute resources

Figure 5-4 Data model for virtual resources

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

51 | P a g e

5.2. Resource Visualisation

The infrastructure repository provides a rich set of data which can be used by various

‘users’ or components within the T-NOVA orchestration layer. An expected use of the

data is to provide use case specific visualisation of the data repository status. While

the generalised visualisation of the data will be implemented as part of the

Orchestrator management interface, a number of sample use cases were identified to

validate the usefulness of the data stored in the repository, and the relationships

defined in the connections between the nodes. The four use cases identified are not

intended to represent an exhaustive investigation of all the potential visualisation

uses cases, but rather to provide indicative use cases. These use cases represent real

world operational scenarios which can be supported by the repository data and

demonstrate how visualisation of the relevant data provides meaningful added value.

The four sample use cases identified are:

 Visualisation of NFVI-PoPs in T-NOVA System

 VNF Resource Allocation

 Physical Network Topology

 Network Port Failure Identification

5.2.1. Use Case 1

Use Case ID IRS-VIS-001

Use Case Name Visualisation of NFVI-PoPs in T-Nova System

Actors Orchestrator Administrator

Purpose Visualisation used by the Orchestrator Administrator to view the

status of the WAN links between the NFVI-PoP.

Description Orchestrator inserts WAN endpoint information and associated

statistics into the middleware PoP database.

The administrator determines there is an issue with the

configuration of a WAN connection.

The administrator uses the visualisation to investigate configuration

of the links between the PoP’s and determine the root cause of

issue.

The administrator requests a WAN link configuration change e.g.

increase bandwidth allocation to resolve the issue.

Assumptions The middleware database has been updated by the T-NOVA

Orchestrator or other entity within the T-NOVA system with PoP

ingress and egress endpoints and associated parametric data.

Figure 5-5 shows the set of actions within the infrastructure repository subsystem

that are required to retrieve the necessary information to fulfil the use case. Figure 5-

6 shows the visualisation using Alchemy.js.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

52 | P a g e

Figure 5-5 Retrieve PoPs Topology Flow Diagram

Figure 5-6 Example of a T-Nova PoPs topology

5.2.2. Use Case 2

Use Case ID IRS-VIS-002

Use Case Name VNF Resource Allocation

Actors Customer

Purpose Allows a customer to determine if requested resource allocation for

purchased VNF has been correctly performed

Description The customer purchases a Network Service with a specific resource

allocation.

From a menu the customer selects their NS service to visualise.

The customer uses the visualisation to inspect if the VNFs

composing up the service have been deployed in accordance with

their purchase request.

The high level details of the NS service stack deployment are

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

53 | P a g e

visualised.

The customer clicks on the icon to display detailed information on a

specific component.

If the customer is unhappy with the deployment configuration they

contact the SP for resolution.

Assumptions Assumes that OpenStack resource information has been updated

correctly within the repository.

Figure 5-7 shows the set of actions within the infrastructure repository subsystem

that are required to retrieve the necessary information to fulfil the use case. Figure 5-

8 shows the visualisation using Alchemy.js.

Figure 5-7 Retrieve VNF allocation Flow Diagram

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

54 | P a g e

Figure 5-8 VNF Resources allocation graph

5.2.3. Use Case 3

Use Case ID IRS-VIS-003

Use Case Name Physical Network Topology

Actors DC Administrator

Purpose Allows a data centre administrator visualisation the complete or a

subsection of the physical network topology to support redesign

activities.

Description The Administrator enters the name of the NFVI-PoP.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

55 | P a g e

The physical network topology of the DC is visualised showing the

physical OpenFlow enable switches, the connections between the

switches and the physical nodes attached to the switches.

Additional information is available on the ports of the physical

nodes connected to the switches.

Information is available on the both switches and ports on the

switches.

The administrator can filter the visualisation to a subset of the

physical network topology based on selections such as switch only.

Assumptions The OpenDaylight controller’s REST APIs are available.

Figure 5-9 shows the set of actions within the infrastructure repository subsystem

that are required to retrieve the necessary information to fulfil the use case. Figure 5-

10 shows the visualisation using Alchemy.js.

Figure 5-9 Retrieve Network Topology Flow Diagram

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

56 | P a g e

Figure 5-10 Physical Network Topology

5.2.4. Use Case 4

Use Case ID IRS-VIS-004

Use Case Name Network Port Failure Identification

Actors DC Administrator

Purpose Allows an administrator to troubleshoot the loss of network

connectivity to a VNF or set of VNFs running on compute node

connected to an SDN switch.

Description The Administrator enters the NFVI PoP name

The Administrator then enters the name of a virtual network.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

57 | P a g e

The active and inactive ports are displayed.

The administrator uses the visualisation to identify VM’s which are

affected by a network port failure on a physical switch or NIC or

vSwitch.

Assumptions The OpenDaylight controller’s REST APIs are available

The compute node information in the infrastructure repository is up

to date.

Figure 5-11 shows the set of actions within the infrastructure repository subsystem

that are required to retrieve the necessary information to fulfil the use case. Figure 5-

12 shows the visualisation using Alchemy.js.

Figure 5-11 Flow diagram illustrating the steps in the retrieval of network ports in failed

state

Figure 5-12 Visualisation Network Port failure between a switch and compute node

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

58 | P a g e

6. INFRASTRUCTURE REPOSITORY SUBSYSTEM

INTEGRATION

The following sections describe the key T-NOVA system integration points with the

infrastructure resource repository subsystem, or the repository’s dependence on

system functional features, namely security and authentication.

6.1. Resource Mapping Algorithm

The Service Mapping (SM) component of T-NOVA focuses on the optimal assignment

of Network Service (NS) chains to servers hosted in an NFVI-PoP. The candidate

hardware apparatus for a mapping, i.e. servers and links within each PoP and links

between couples of PoP, have to be able to support the performance requirements of

the VNFs composing the NS. In particular, a feasible solution of the service mapping

problem must respect the following three requirements.

Node Requirements: A set of node resource types, say NT, is associated to the VNFs

composing the NS and the PoP in the NFVI. Each member of the NT set represents a

particular resource (e.g. CPU power need, number of cores, number of hardware and

software accelerators, number of GPUs, etc.), which can be required by a VNF, since it

could be required by some of its component. A numerical value, say 𝑅𝑅ℎ
𝑡 , is

associated to each VNF h, with t NT. It represents the amount of aggregate

resource of type t required by the VNF h. A numeric value, say 𝑅𝐴𝑢
𝑡 , is associated to

each PoP u, with t NT. It represents the amount of aggregate resource of type t

available in the PoP u.

For each resource type t present in a VNF, the SM algorithm needs to compute the

aggregate value of that resource type available in each PoP of the NFVI, since for

each PoP node u and resource type t, the sum of the aggregate resource needs of all

VNFs mapped to it cannot exceed the aggregate available resource 𝑅𝐴𝑢
𝑡 .

Link Requirements: A set of link resource types, say LT, is associated to the links in

the NS chain and to those connecting different PoP. Each member of the LT set

represents a particular resource (e.g. bandwidth) which can be required by an arc (h,k)

in the NS chain. A numerical value, say 𝑅𝑅ℎ𝑘
𝑡 , is associated to each arc (h,k) in the NS

chain, with t LT. It represents the amount of resource of type t required by the arc

(h,k). A numeric value, say 𝑅𝐴𝑢𝑣
𝑡 , is associated to each arc (u,v) in NFVI, with t LT. It

represents the amount of resource of type t available in the arc (u,v): for each arc (u,v)

and each resource type t LT, the sum of the 𝑅𝑅ℎ𝑘
𝑡 , values of NS arcs mapped to

paths including (u,v) cannot exceed 𝑅𝐴𝑢𝑣
𝑡 .

SLA: Each NS request corresponds to a set, say P, of paths connecting pairs of VNFs.

Each path, say P is a sequence of arcs in the NS chain. A maximum allowed delay,

say , is associated to each path in P. An actual delay pq is associated to each

arc (p,q) in the NFVI. For each path P, the sum of the pq of all the arcs (p,q) in the

NFVI belonging the paths used for connecting all the links belonging to , cannot

exceed .

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

59 | P a g e

The APIs implemented by the resource repository middleware layer represents the

source of information needed by the SM algorithm to have visibility to the level of

available infrastructure resources. In this way, the solutions computed by the Service

Mapping algorithm are guaranteed to be aligned with the actual state of the

infrastructure, respecting resource limits at each PoP. In particular, Use Case 1 shows

how the SM algorithm can use “GET PoP” API to retrieve link information (GET

http://.../pop/, GET http://.../pop/link) and Use Case 3 shows how the SM algorithm can

use “GET resource” to retrieve resource information (GET http://.../machine/, GET

http://.../core/, …).

Full details on T-NOVA SA algorithm design and implementation will be presented in

T-NOVA deliverable “Deliverable 3.3 Service Mapping”, due on month 24.

6.2. Orchestrator Integration

The T-NOVA Orchestrator comprises different modules requiring infrastructure

information from the repository. As the Orchestrator is built following the micro-

service pattern, different modules can independently access the infrastructure

repository through the middleware APIs. Table 6-1 outlines the core micro-services of

the Orchestrator which can connect to the infrastructure resource repository.

Table 6.1 Orchestrator micro service dependencies

Micro-service Description

NS Manager

Entry-point of the Orchestrator. It works as the internal coordinator of

the orchestrator at the service level. It connects with the infrastructure

repository in order to enable external entities (if authenticated and

authorised) to obtain the corresponding information of the

infrastructure repository.

NS Provisioning

NS Provisioning is the micro-service responsible for the deployment

and instantiation of any given network service, starting with the

software instantiation itself and ending with the deployment of the

corresponding VNFs on the NFV Infrastructure. The NS provisioning, in

coordination with the service mapping micro-service, is responsible for

generating a notification when a service is successfully deployed, so

that the infrastructure repository can update the capacity and

information of the NFVI-PoP accordingly.

This micro-service also consumes information from the infrastructure

repository in order to be aware of the different services deployed and

its status on the infrastructure.

Management UI

The management UI component utilises the repository, to support

various use cases such as ones outlined in section 5.2. The

management UI, through the NS manager, consumes information from

the repository in order to enable a human administrator to have an

overall view of the topology and the different resources available in

the NFVI-PoP. Figure 6-1 shows an example of the infrastructure

repository visualisation through the management UI.

http://.../pop/
http://.../pop/link
http://.../machine/
http://.../core/

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

60 | P a g e

Figure 6-1 Integration repository in T-NOVA Orchestrator management UI

6.3. Orchestration Layer Interfaces

The interfaces exposed by the middleware layer are considered to be internal to the

T-NOVA Orchestration layer. The basic features of the interfaces which need to be

considered by the middleware API’s in the context of the general goals of

Orchestration layer’s internal interfaces are as follows:

 Flexibility to enable new information resources to be defined for the NFVI.

 Low latency, to minimise the response times to queries from Orchestrator

components.

 Scalability to support multi NFVI-PoP’s

 Resiliency to (infrastructure) failure or performance degradation (due to

failure or overload),

The implementation of the middleware layer considered these goals in the design

and implementations of the API’s. As previously outlined the middleware layer OCCI

compliant REST API’s makes that information (JSON over HTTP) available to T-NOVA

Orchestrator components. The middleware layer API’s is compliant to the general

design approach for the Orchestration layer interfaces i.e. Northbound, Southbound

and internal which are based on either Web Service SOAP- or REST, while data is

structured in either XML or JSON formats.

6.4. Service Visualisation Module

T-NOVA Service Visualisation module is part of the T-NOVA service orchestration

solution. It provides insights to network management and assurance operations

across most of the segments/parts of a network service. This main functions provide

by the module include a common inventory, and monitoring dashboard which shows

the status of the network build and highlights possible alarms and key faults, with the

ability to localise faults/alerts to a specific location. It runs as an independent

modular microservice inside the orchestrator «eco-system» and scales up/down

based on the network topology and number of network services that need to be

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

61 | P a g e

visualised. The visualisation module uses the infrastructure repository as a key source

of input data with integration provided via the repositories middleware API layer.

6.4.1. Features and Benefits

The Service Visualisation module provides the following features:

 RESTful API, supporting integrated into the Orchestrator’s management user

interface.

 Custom based views – Zoomable maps are supported, based on Google maps

technology, to display end-to-end topology of the network service.

 Performance and Scalability - The microservice software architecture utilised

provides robust, scalable and configurable software, to support large

networks and a significant number of transactions per minute.

6.4.2. Service Visualisation Architecture

Figure 6-2 shows the internal architecture of Service Visualisation microservice. The

module consists of the following main components:

1. Northbound Service Visualisation RESTful API – A RESTful API is provided to

support integrated with the T-NOVA orchestration ecosystem.

2. Service Visualisation Adapter component – It converts specific network service

data, to the appropriate data format required to support visualisation of the

network service.

3. Management Functions component - Through the management functions,

you can define the authentication/authorisation strategy, scaling metrics and

configuration of the RESTful clients, in order to retrieve required information,

from other orchestration layer modules. The Management Functions can be

configured, using T-NOVA management UI, through the RESTful API of the

management console.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

62 | P a g e

Figure 6-2 Service Visualisation Module Architecture

6.5. Gatekeeper Integration

Gatekeeper is the T-Nova identity/authorisation micro-service that allows simple

actions such as user registration/authentication and inter-services authorisation

based on tokens. It exposes a set API as outlined in Table 6.2.

Table 6.2 Gatekeeper API

URI Headers HTTP

Type

Body Purpose

/ None GET None Discovery API, list of

supported URIs

/admin/user/

X-Auth-Token,

X-Auth-Uid

GET None List of registered users

/admin/user/

X-Auth-Token,

X-Auth-Uid

POST Required New user registration

endpoint

admin/user/{user-id}
X-Auth-Token,
X-Auth-Uid

GET None Details on the user

/admin/user/{user-id}
X-Auth-Token,
X-Auth-Uid

PUT Required Update an existing user

/admin/user/{user-id}
X-Auth-Token,
X-Auth-Uid

DELETE None Delete an existing user

/auth/{user-id}
X-Auth-
Password

GET None
Authentication request,
list of any valid token(s)
are returned

/token/
X-Auth-Uid, X-
Auth-Password
or X-Auth-Token

POST None Generate a new token.

/token/{token-uuid}
X-Auth-Uid, X-
Auth-Token

GET None
Details of an existing
token.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

63 | P a g e

/token/{token-uuid}
X-Auth-Uid, X-
Auth-Token

DELETE None
Revoke an existing
token.

/token/validate/{token-
uuid}

X-Auth-Service-
Key or X-Auth-
Uid

GET None
Validate an existing
token.

To integrate the middleware layer APIs with Gatekeeper, an API Proxy was

implemented. For authentication purpose, two new headers are added to requests to

the middleware layer. The two headers are X-Auth-uid and X-Auth-Token. They are

used to authenticate the request using the Gatekeeper call GET

/token/validate/{token-uuid}. The steps required to authenticate requests are shown

in Figure 6-3.

Figure 6-3 Middleware Layer - Gatekeeper integration

For example if a user wants to request the list of PoPs the user (USER_UUID) must be

registered with Gatekeeper and possess a valid token (TOKEN_UUID).

As outlined in Section 4.5.1 the request to the Middleware layer, without

authentication mechanism, would as follows:

GET http://middleware_url/pop/

--header "Accept: application/occi+json"

Using the API proxy the request becomes (steps numbers relate to Figure 6-1):

(1)

GET http://api_proxy_url/pop/

--header "Accept: application/occi+json"

--header "X-Auth-Uid:USER_UUID"

--header "X-Auth-Token:TOKEN_UUID"

http://middleware_url/pop/
http://api_proxy_url/pop/

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

64 | P a g e

Internally the API Proxy calls Gatekeeper to validate the token:

(2)

GET http://<gatekeeper_url>/token/validate/TOKEN_UUID

--header "Accept: application/occi+json"

--header "X-Auth-Uid:USER_UUID"

--header "X-Auth-Token:TOKEN_UUID"

Gatekeeper’s response (3.) will be:

 200 if the Token is valid;

 406 if the token is not valid.

In the case of invalid token all following steps will be skipped and Gatekeeper’s

response will be provided to the user (6.)’

In the case of valid token the API Proxy will continue serving the request redirecting

the call to the middleware layer:

(4)

GET http://<middleware_url>/pop/

--header "Accept: application/occi+json"

The Middleware layer’s response (5.) will be provided to the user (6.) The same

process is repeated for each call to the middleware layer. The Middleware layer is

configured to respond only if requests come from the API Proxy, ensuring that all the

calls are authenticated before the action.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

65 | P a g e

7. INFRASTRUCTURE REPOSITORY DISTRIBUTION

PACKAGE

As outlined in section 6.2 the T-NOVA Orchestration layer is being developed using a

microservices architecture. The application comprises of a suite of small services, each

running in its own process and communicating using a HTTP resource API.

The common requirements of the microservices are:

 They are relative small.

 They are independently deployable to improve fault isolation

 They are written using a variety of languages, frameworks, and framework

versions.

 They can be composed by multiple service instances for throughput and

availability purposes.

 Services are scalable.

 Services are isolated from one another.

 The manager should be able to constrain the resources (CPU and memory)

consumed by a service.

 The manager needs to monitor the behaviour of each service instance

 Services should be deployable as cost-effective as is possible.

To satisfy these requirements a deployment a solution based around a container

image (Docker) for infrastructure repository was developed. This approach supports

the deployment of each service instance as a container. The benefits of this approach

include:

 Agile service scale up/down if service by changing the number of running

container instances.

 The container encapsulates the details of the technology used to build the

service. All services are, for example, started and stopped in exactly the same

way.

 Each service instance is isolated

 A container imposes limits on the CPU and memory consumed by a service

instance

 Containers are extremely fast to build and start. For example, it's 100x faster

to package an application as a Docker container than it is to package it as an

AMI. Docker containers also start much faster than a VM since only the

application process starts rather than an entire OS.

The components encapsulated in containers are as follows:

 The EPA controller and Listener services are packaged in a single container.

 The middleware database is packaged in a container

 The middleware layer is packaged in a container

 The resource repository database is packaged in a container.

 The API Proxy for Gatekeeper integration is packaged as a container

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

66 | P a g e

For each container a Dockerfile is provided to set up the components for a given

deployment. The main parameters that an administrator installing the repository

subsystem needs to provide when configuring each component are:

For the EPA controller:

 OpenStack controller IP

 OpenStack controller hostname

 OpenStack MySQL DBs credentials

 RabbitMQ broker credentials and endpoint (Host and Port)

 EPA database endpoint and credentials

 PoP ID (e.g. IR_LEX_001)

For the Middleware Layer:

 PoP database endpoint and credentials

 Middleware layer port

For the PoP database

 Neo4j credentials

For the EPA DB

 Neo4j credentials

For the API Proxy

 Gatekeeper endpoint

 Middleware layer endpoint

The agent is distributed as a Python application that needs to be installed on each

compute node of a NFVI PoP. It is configured to run at boot time, and optionally it

can be scheduled to run periodically as described in Section 3.4.1.1. The configuration

parameters required by the agent are:

 EPA Controller IP

 EPA Controller ssh credentials

 RabbitMQ broker credentials and endpoint (Host and Port)

Further details on the installation of the repository subsystem components can be

found in the installation guide.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

67 | P a g e

8. CONCLUSIONS

The infrastructure repository is a key subsystem of the T-NOVA Orchestrator. It

provides a rich set of infrastructure related information from the software and

hardware components that comprise the NFVI and VIM of the T-NOVA IVM layer.

Analysis of the software components selected to implement the VIM (namely

OpenStack and OpenDaylight) revealed that limited infrastructure related information

was available. Different options were identified and analysed to implement the

repository. One option was selected for prototype implementation, in order to test

the feasibility of the general design and act as vehicle to test fulfilment of

requirements identified in WP2 plus identifying new requirements based on

discussions with tasks dependent on the resource repository.

Using the learnings from the prototype implementation and the complete set of

requirements captured, the final design of the infrastructure repository subsystem

was developed. The design comprises 5 key functional components. The first

component is an enhanced platform awareness agent which runs on the compute

nodes and collects platform specific information. The second component is the

listener services. One listener is dedicated to handling messages generated by the

EPA agent, and the second one is dedicated to OpenStack related messages. The

third component is the EPA controller which coordinates with listener services to

process and persist updates to the repository database from files received from the

EPA agents or OpenStack infrastructure landscape change notifications. The fourth

component is the infrastructure repository database which is responsible for storing

the infrastructure related information and the relationships between the stored

information. The database was implemented as a graph database in order to support

the encoding of the relationships between the components of the NFVI. This

approach also provided a convenient mapping of the systems structures within the

NFVI and node structures of a graph database. The final component is a middleware

API layer which provides a common REST based interface to Orchestrator

components that want to retrieve information from the repository. This REST

interface was implemented in an OCCI compliant manner to provide abstraction from

the underlying implementation. The middleware layer also features a database to

support the storage of NFVI PoP ingress and egress endpoints and associated

parametric data for the links. The design and implementation of the middleware layer

API’s also supports multiple NFVI-PoP infrastructure repository database instances

thus allowing the subsystem to scale across multiple PoP as necessary.

A number of sample visualisation use cases based the information which is stored in

the repository database were developed. The use cases focused on scenarios where

the resource information stored in the repository subsystem could be used to

support specified problems or operational needs in a value added manner.

Visualisation of the repository information will be functionality incorporated into the

management UI of the T-NOVA Orchestration layer. Additionally the Service

Visualisation Module a component within the broader orchestration ecosystem will

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

68 | P a g e

also use information from the infrastructure repository to support network specific

visualisation.

All components have been successfully implemented and integrated to deliver a fully

functional infrastructure repository subsystem. A Docker container based approach

was been adopted for packaging and distribution of the repository subsystem

components. This package will be used to support deployments activities required in

Task 4.5 and WP7.

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

69 | P a g e

9. LIST OF ACRONYMS

Acronym Explanation

API Application Program Interface

DAG Directed Acyclic Graph

DB Database

CPU Central Processing Unit

EPA Enhanced Platform Awareness

GPU Graphics Processor Unit

HTTP Hypertext Transfer Protocol

HW Hardware

IaaS Infrastructure as a Service

IVM Infrastructure virtualisation and management

JSON JavaScript Object Notation

NAT Network Address Translation

NFVI Network Function Virtualisation Infrastructure

NIC Network Interface Card

NS Network Service

NUMA Non-uniform memory access

OCCI Open Cloud Compute Interface

ODL OpenDaylight (SDN Controller)

PCIe Peripheral Component Interconnect Express

PoP Point of Presence

REST Representational State Transfer

SDN Software Defined Networking

SR-IOV Single Root Input/Output Virtualisation

SSH Secure Shell

UI User Interface

URL Uniform Resource Locator

UUID Universally unique identifier (

vCPU Virtual Central Processing Unit

vNIC Virtual Network Interface Card

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

70 | P a g e

VIM Virtual Infrastructure Manager

VM Virtual Machine

VNF Virtualised Network Function

WAN Wide Area Network

T-NOVA | Deliverable D3.2 Infrastructure Resource Repository

71 | P a g e

10. REFERENCES

[1] A. Edmonds, T. Metsch, A. Papaspyrou, and A. Richardson, "Toward an Open

Cloud Standard," Internet Computing, IEEE, vol. 16, pp. 15-25, 2012.

[2] OCCI. (2015). The Open Cloud Computing Interface. Available: http://occi-

wg.org/

[3] C. Larman, "Iterative & Evolutionary," in Agile & Iterative Development - A

Managers Guide, ed Boston, MA, USA: Addison-Wesley Professional 2004, pp.

9-24.

[4] L. Efremova and D. Andrushko. (2015, 22nd June). What's In OpenDaylight.

Available: https://www.mirantis.com/blog/whats-opendaylight/

[5] Intel, "OpenStack Enhanced Platform Awareness," 2015.

[6] A. Sagar. (2013). What is the advantage of using a graph database over a

relational database for recommendations? Available:

http://www.quora.com/What-is-the-advantage-of-using-a-graph-database-

over-a-relational-database-for-recommendations

[7] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins, "A comparison

of a graph database and a relational database: a data provenance

perspective," presented at the Proceedings of the 48th Annual Southeast

Regional Conference, Oxford, Mississippi, 2010.

[8] Open-MPI. (2015). Portable Hardware Locality (hwloc). Available:

http://www.open-mpi.org/projects/hwloc/

[9] B. Goglin, "Managing the Topology of Heterogeneous Cluster Nodes with

Hardware Locality (hwloc)," presented at the International Conference on High

Performance Computing & Simulation (HPCS 2014), Bologna, Italy, 2014.

[10] Python. (2012). Python Decorators. Available:

https://wiki.python.org/moin/PythonDecorators

[11] A. Edmonds, T. M. Bohnert, T. Metsch, P. Harsh, G. Carella, L. Ferreira, A.

Gomes, G. Katsaros, S. Khatibi, A. Marcarini, J. Muller, N. Nikaein, S. Ruffino, S.

Ruiz, and G. Toffetti, "Final Overall Architecture Definition, Release 2", 2015.

http://occi-wg.org/
http://occi-wg.org/
http://www.mirantis.com/blog/whats-opendaylight/
http://www.quora.com/What-is-the-advantage-of-using-a-graph-database-over-a-relational-database-for-recommendations
http://www.quora.com/What-is-the-advantage-of-using-a-graph-database-over-a-relational-database-for-recommendations
http://www.open-mpi.org/projects/hwloc/

