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Executive	Summary	

This	deliverable	provides	general	guidelines	and	some	specific	information	that	can	be	used	
by	 Function	 Developers	 to	 develop	 Virtual	 Network	 Functions	 (VNFs)	 within	 the	 T-Nova	
framework.	 Also,	 it	 contains	 the	 description	 of	 six	 VNFs	 that	 are	 currently	 under	
development	in	T-Nova.	The	VNFs	are	the	following:	

• Security	Appliance	
• Session	Border	Controller	
• Video	Transcoding	Unit	
• Traffic	Classifier	
• Home	gateway	
• Proxy	as	a	Service.	

The	VNFs	developed	in	T-Nova	span	a	very	wide	area	of	the	Network	Function	domain,	and	
can	 thus	 represent,	 from	 a	 developer’s	 perspective,	 a	 set	 of	 highly	 significant	
implementation	 use	 cases,	 in	 which	 many	 problems	 related	 to	 network	 function	
virtualization	 have	 been	 faced	 and	 solved.	 Also,	 in	 the	 VNFs	 presented	 in	 this	 document	
different	 technologies	 have	 been	 adopted	 by	 T-Nova	 developers.	Most	 VNFs,	 in	 fact,	 take	
advantage	 of	 various	 contributions	 coming	 from	 the	 open	 source	 community,	 such	 as	
[SNORT],	 or	 exploit	 recent	 technological	 advances,	 such	 as	 	 [DPDK],	 SR-IOV	 [Walters],	 or	
general	purpose	Graphical	Processing	Units	[CUDA].		

Some	practical	information	that	can	be	useful	to	function	developers	is	also	provided	in	the	
first	part	of	 the	document,	 related	 to	 the	most	 implementation	 issues	encountered	 in	 the	
development	phase.	Finally,	 some	preliminary	results	obtained	 in	 the	tests	 that	have	been	
carried	out	are	also	reported	and	briefly	discussed.	
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1. INTRODUCTION	

This	document	contains	a	description	of	the	Virtual	Network	Functions	(VNFs)	developed	in	
the	T-Nova	project.	Those	VNFs	have	been	developed	in	order	to	demonstrate,	with	real-life	
applications,	 the	 capabilities	 offered	 by	 the	 overall	 T-Nova	 framework.	 Moreover,	 other	
function	 providers	 who	 want	 to	 develop	 new	 VNFs	 within	 T-Nova	 can	 use	 them	 as	 an	
example.	 To	 this	 aim,	 general	 guidelines	 are	 briefly	 summarized	 and	discussed	 in	 the	 first	
part	 of	 the	 document.	 In	 particular,	 some	 main	 concepts	 related	 to	 the	 VNF	 internal	
topology,	 the	 lifecycle	 management,	 the	 VNF	 Descriptor	 and	 the	 interaction	 with	 the	
monitoring	 framework	 are	 discussed,	 and	 information	 of	 practical	 interest	 to	 VNF	
developers	 is	 provided.	 Then,	 the	 specific	 VNFs	 currently	 being	 developed	 in	 T-Nova	 are	
described.	 In	 particular,	 six	 different	 VNFs	 are	 discussed,	 covering	 a	 wide	 range	 of	
applications,	which	are:		

• Virtual	Security	Appliance;	
• Virtual	Session	Border	Controller;	
• Virtual	Transcoding	Unit;	
• Traffic	Classifier;	
• Virtual	Home	Gateway;	
• Proxy	as	a	Service;	

For	 each	 VNF,	 architectural	 and	 functional	 descriptions	 are	 provided,	 along	 with	 the	
technologies	 used	 and	 the	 internal/external	 interfaces.	 In	 addition,	 some	 preliminary	 test	
results	that	were	obtained	are	summarized	and	briefly	discussed.		
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2. NETWORK	FUNCTIONS	IMPLEMENTATION	

This	section	describes	properties,	 rules,	and	best	practices	applicable	 to	any	VNF.	Many	of	
the	VNF's	properties	should	be	described	in	the	VNF	Descriptor,	or	simply	in	the	VNFD.		

2.1. Common	to	all	VNFs	

2.1.1. VNF	general	architecture	

In	 the	 T-NOVA	 framework,	 a	 VNF	 is	 defined	 as	 a	 group	 of	 Virtual	 Network	 Function	
Components	(VNFC);	also,	one	VNFC	consists	of	one	single	Virtual	Machine.	Each	VNF	shall	
support	the	T-NOVA	VNF	lifecycle	(i.e.	start,	stop,	pause,	scaling,	etc.)	under	the	control	of	
the	VNFM.	

With	 the	 exception	 of	 some	 mandatory	 blocks	 (described	 in	 the	 following),	 internal	
implementations	 of	 a	 VNF	 are	 left	 to	 the	 VNF	 Developer.	 Nonetheless,	 it	 is	 suggested	 to	
adopt	 a	 common	 structure	 for	 the	VNF	 internal	 components	 as	 depicted	 in	 Figure	 1.	 VNF	
developers	who	aim	to	develop	new	VNFs	should	follow	the	common	practices	introduced	in	
the	T-NOVA	framework.	

	

	
Figure	1.	VNF	internal	components	

In	this	architecture	the	VNF	Controller	is	the	internal	component	devoted	to	the	support	of	
the	VNF	 lifecycle.	 The	 Init	 Configuration	 component	 is	 responsible	 for	 the	 initialization	 of	
the	 VNF	 that	 happens	 at	 the	 beginning	 of	 the	 VNF	 execution.	 The	 Monitoring	 Agent	
component	 transmits	 application-level	 monitoring	 data	 towards	 the	 Monitoring	 System.		
Extensive	description	of	the	VNF	architecture	and	its	specifications	can	be	found	in	[D2.41].		

All	the	VNF	internal	components	are	optional,	except	the	VNF	Controller.	The	VNF	Controller	
often	 acts	 as	VNF	Master	 Function,	 and	 is	 responsible	 for	 the	 internal	 organisation	of	 the	
VNFCs	 into	a	 single	VNF	entity	 [NFVSWA].	 It	must	be	present	 in	each	VNF	because	 it	 is	 in	
charge	of	supporting	the	T-Ve-Vnfm	interface	towards	the	VNFM.	VNF	developers	are	free	to	
develop	VNF	 internal	 components	 in	any	way	 they	prefer	as	 long	as	 they	comply	with	 the	
VNF	 lifecycle	 management	 interface	 T-Ve-Vnfm,	 defined	 in	 [D2.21].	 The	 previous	 case	
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applies	when	the	T-NOVA	generic	VNFM	(VNFM-G)	is	used.	Conversely,	if	the	VNF	is	supplied	
with	 a	 specific	 VNFM	 (VNFM-S),	 then	 the	 implementation	 of	 the	 control	 plane	within	 the	
VNF	is	entirely	up	to	the	developer.		

In	 the	 case	 of	 a	 VNF	 composed	 by	 more	 than	 one	 VNFC,	 the	 VNF	 developer	 is	 free	 to	
accommodating	the	internal	VNF	components.	The	minimal	mandatory	requirement	is	that	a	
unique	VNF	controller	must	be	inserted	in	each	VNF,	i.e.	the	VNF	controller	shall	be	installed	
in	 just	one	VNFC.	The	remaining	components,	 i.e.	 Init	Configuration	and	Monitoring	Agent,	
can	 be	 freely	 allocated	 in	 different	 VNFCs.	 In	 Figure	 2	 we	 provide	 an	 example	 of	 a	 VNF	
composed	by	two	VNFCs.	In	this	case	the	Init	Configuration	component	is	allocated	in	both	
the	VNFCs,	while	there	is	only	one	Monitoring	Agent.	Of	course	different	configurations	are	
also	possible	depending	on	the	particularities	of	the	VNF.		

	
Figure	2.	VNF	composed	by	many	VNFCs	

2.1.2. VNF	Descriptor	

Aligned	 to	 the	 ETSI	 Specification	 for	 VNF	 Descriptors	 [NFVMAN],	 T-NOVA	 proposes	 a	
simplified	version	for	the	first	sprint	of	the	T-NOVA	platform	implementation.	As	defined	in	
[NFVMAN],	 a	 VNF	Descriptor	 (VNFD)	 is	 “a	 deployment	 template	which	 describes	 a	 VNF	 in	
terms	of	deployment	and	operational	behaviour	requirements”.		

As	the	VNFs	are	participating	in	the	networking	path,	the	VNFD	also	contains	information	on	
connectivity,	 interfaces	 and	 KPIs	 requirements.	 The	 latter	 is	 critical	 for	 the	 correct	
deployment	of	 the	VNF	as	 it	 is	used	by	 the	NFVO	 in	order	 to	establish	appropriate	Virtual	
Links	within	the	NFVI	between	VNFC	instances,	or	between	a	VNF	instance	and	the	endpoint	
interface	to	other	Network	Functions.	

It	should	be	noted	that	the	3rd	party	developers,	 implementing	VNFs	to	be	used	in	T-NOVA	
platform	 need	 to	 follow	 some	 basic	 guidelines	 in	 relation	 to	 the	 anticipated	 VNF	 internal	
architecture	 and	 deployment	 as	 well	 as	 for	 the	 VNFM	 –	 VNF	 communication	 as	 was	
illustrated	 in	 the	 previous	 subsection	 (Section	 2.1.1),	 applicable	 in	 case	 the	 generic	 VNFM	
(VNFM-G)	is	being	used.		

Prior	 to	 presenting	 the	 VNFD	 template	 as	 it	 is	 introduced	 in	 T-NOVA,	 the	 following	
subsection	 elaborates	 on	 the	 structure	 and	 connectivity	 domains	 that	 are	 expected	 by	 T-
NOVA.	



T-NOVA	|	Deliverable	D5.31	 Network	Functions	Implementation	and	Testing	-	Interim	

©	T-NOVA	Consortium	
9	

2.1.3. VNFD	and	VNF	Instantiation	

The	instantiation	of	a	VNF	is	bound	to	the	type	and	complexity	of	the	VNF,	a	non-exhaustive	
list	of	factors	that	play	role	in	this	are:		

• VNF	complexity	(e.g.	VNF	consisting	of	single	VNFC)	
• VNF	internal	networking	topology	(e.g.	virtual	networks	required	to	interconnect	the	

VNFCs)	
• Restrictions	on	VNFC	booting	order		
• Existence	of	VNF	specific	VNFM		
• Use	of	Element	Management	(EM)	

An	example	scenario	for	the	instantiation	of	a	VNF	is	explored	below.	A	VNF	comprised	of	3	
VNFCs	is	considered.	Each	VNFC	is	described	in	the	VNFD,	where	the	required	resources	for	
each	VNFC	are	declared.	The	VNFM	instantiates	the	three	VNFCs	by	signalling	to	the	NFVO	
and	 through	 that	 to	 the	 VIM	 the	 creation	 and	 instantiation	 of	 the	 three	 virtualisation	
containers	 that	 will	 host	 the	 three	 VNFCs.	 At	 this	 point	 the	 VNFC	 may	 be	 seen	 as	
independent	 entities	 not	 yet	 organised	 as	 a	VNF.	However,	 the	VNFCs	 are	 interconnected	
using	the	stated	in	the	VNFD	internal	networks	and	interfaces.	The	L2/L3	information,	vital	
for	 the	 next	 steps	 is	 retrieved	 by	 the	 VNFM	 who	 in	 turn	 communicates	 with	 the	 NVF	
Controller	 in	order	to	proceed	with	the	configuration	and	organisation	of	those	VNFCs	into	
the	VNF.		

The	 next	 subsections	 provide	 more	 information	 on	 the	 T-NOVA	 pre-selected	 network	
domains	 foreseen	 for	 all	 the	 VNFs	 in	 order	 to	 simplify	 the	 deployment	 and	 instantiation	
process.	

2.1.4. VNFC	Networking	

According	 to	 the	 T-NOVA	 architecture	 each	 VNFC	 should	 have	 four	 separate	 network	
interfaces,	each	one	bound	to	a	separate	isolated	network	segment.	The	networks	related	to	
any	VNFC	are:	management,	datapath,	monitoring	and	storage.	The	figure	below	(Figure	3)	
illustrates	 the	 above	 statement.	 In	 various	 cases	 the	 above	 rule	 might	 not	 be	 followed,	
especially	in	the	case	where	there	is	no	real	requirement	for	a	particular	network/interface	
e.g	a	VNFC	that	is	not	using	persistent	storage	on	the	storage	array	of	the	NFVI.		
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Figure	3	VNF/VNFC	Virtual	Links	and	Connection	Points	

The	management	network	provides	the	connection	and	communication	with	the	VNFM	and	
passes	lifecycle	related	events	seamlessly	to	the	VNF.	The	management	network	conveys	the	
information	passed	over	from	the	VNFM	to	the	VNF	Controller	(T-Vnfm-Vnf	 interface).	The	
VNFM	 can	 control	 each	 particular	 VNFC,	 through	 the	management	 interface,	 and	 provide	
the	overall	stable	functionality	of	the	VNF.		

The	datapath	network	provides	the	networking	for	the	VNF	to	accept	and	send	data	traffic	
related	 to	 the	 network	 function	 it	 supports.	 For	 example,	 a	 virtual	 Traffic	 Classifier	would	
receive	the	traffic	under	classification	from	this	interface.	The	datapath	network	can	consist	
of	more	than	one	network	interfaces,	that	can	receive	and	send	data	traffic.	For	example,	in	
the	 case	 where	 the	 function	 of	 the	 VNFC	 is	 a	 L2	 function	 (e.g.	 a	 bridge),	 the	 anticipated	
interfaces	are	two,	one	for	the	ingress	and	another	one	for	the	egress.	In	some	cases,	those	
interfaces	might	be	mapped	on	different	physical	interfaces	too.		The	number	of	interfaces	
for	 the	datapath	and	 their	particular	use	 is	decided	by	 the	VNF	provider.	Additionally,	 the	
data	traffic	that	needs	to	be	shared	among	different	VNFCs	uses	the	datapath	network.	

The	monitoring	network	provides	the	communication	with	the	monitoring	framework.	Each	
VNF	has	a	monitoring	agent	installed	on	each	VNFC,	which	collects	VNF	specific	monitoring	
data	 and	 signals	 them	 to	 the	 Monitoring	 Framework	 (see	 [D4.01])	 or	 to	 the	 VNFM/EM	
depending	on	the	situation.	The	flow	of	the	monitoring	data	is	from	the	VNF	service	to	the	
monitoring	agent	and	finally	to	the	monitoring	framework,	which	collects	data	from	all	VNFs.	
A	separate	Monitoring	network	has	been	introduced	in	T-NOVA	to	cope	with	the	amount	of	
traffic	 generated	 in	 large-scale	 deployments.	 Though,	 the	monitoring	 traffic	 can	 be	 easily	
aggregated	 with	 the	 management	 traffic	 into	 a	 single	 network	 instance,	 if	 this	 solution	
results	adequate	to	the	specific	application.		

The	 storage	 network	 is	 indented	 for	 supporting	 communication	 of	 the	 VNFCs	 with	 the	
storage	 infrastructure	 provided	 at	 each	 NFVI.	 This	 applies	 to	 the	 case	 where	 a	 VNFC	 will	
utilize	 persistent	 storage.	 In	 many	 NFVI	 deployment	 scenarios	 the	 physical	 interface	 that	
handles	the	storage	signaling	(e.g.	iSCSI)	on	each	compute	node	is	separated	from	the	other	
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network	segments.	This	network	segment	is	considered	optional	and	only	applicable	to	the	
above	use	cases.		

The	 resulting	deployment	 in	an	Openstack	environment	 is	 illustrated	below	 in	 Figure	4.	 In	
this	example	a	deployment	of	two	VNFC	that	comprise	a	single	VNF	is	illustrated.		

 

Figure	4.	OpenStack	overview	of	the	T-NOVA	VNF	deployment	networks.	

2.1.5. VNF	internal	structure	

A	 VNF	 may	 be	 composed	 by	 one	 or	 multiple	 components	 namely	 the	 VNFCs.	 In	 this	
perspective	each	VNFC	is	defined	as	a	software	entity	deployed	in	a	virtualization	container.	
As	discussed	in	the	previous	section,	Figure	3	presents	the	case	where	a	VNF	is	comprised	of	
one	 VNFC,	whereas	 in	 Figure	 5,	 an	 example	 of	 a	 VNF	 comprised	 by	 3	 VNFC	 is	 given.	 The	
internal	structure	of	the	VNF	is	entirely	up	to	the	VNF	developer	and	should	be	seamless	to	
the	 T-NOVA	 SP.	 It	 should	 be	 also	 noted	 that	 for	 the	 same	 NF	 that	 is	 being	 virtualized,	
different	 developers	might	 as	well	 choose	 different	 implementation	methods	 and	 provide	
the	same	NF	with	different	number	of	components.	The	VNF	internal	structure	is	described	
in	the	VNFD	as	a	graph.	Inside	the	VNFD	the	nodes	(vertices)	of	the	graph	are	the	interfaces	
of	each	VNFC,	and	the	internal	Virtual	Links	interconnecting	the	VNFC	are	the	edges	of	the	
graph.		
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Figure	5	Multi	VNFC	composed	VNF	

The	topology	includes	the	connections	between	different	network	interfaces	of	the	different	
network	components.	From	a	VNF	perspective,	this	topology	is	translated	into	the	different	
connections	 over	 the	 virtual	 links	 (VLs)	 that	 connect	 the	 different	 VNFCs.	 An	 example	 of	
inter-VNFC	 topology	 is	 shown	 in	 Figure	 6.	 The	 monitoring	 network	 is	 considered	 as	
multiplexed	with	the	management.		

 

Figure	6.	Virtual	Link	VNFC	interconnection	example.	

In	this	example	we	allocate	two	datapath	network	segments.	Datapath1	is	used	to	allow	
incoming	traffic	to	both	VNFCs	at	the	same	time	(using	traffic	mirroring).	Datapath2	is	used	
for	the	traffic	exiting	the	VNF.	The	management	is	used	for	allowing	the	external	
communication	of	the	VNF	to	the	VNFM	and	also	to	allow	VNF1	(controller)	to	control	and	
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coordinate	VNFC2.	It	is	apparent	that	other	variants	of	the	above	networking	example	could	
be	possible.	The	developer	will	use	the	VNFD	in	order	to	specify	the	exact	internal	structure	
and	connectivity	of	the	VNF. 
 

2.1.6. VNF	management	interface	

Each	VNF	 shall	 have	 a	management	 interface,	 named	T-Ve-Vnfm	 interface	 that	 is	 used	 to	
support	the	VNF	lifecycle.	The	VNF	lifecycle	is	shown	in	Figure	7.		

 

 

Figure	7.	VNF	lifecycle	

A	 general	 discussion	 on	 the	 VNF	 lifecycle	 can	 be	 found	 in	 [NFVMAN].	 Also,	 the	
implementation	 of	 the	 VNF	 lifecycle	 as	 envisioned	 in	 the	 T-Nova	 project	 is	 discussed	 in	
[D2.41],	 section	 3.3.	 Some	 relevant	 aspects	 encountered	 by	 developers	 in	 the	 VNF	
development	process	are	explained	below.	Some	guidelines	to	clarify	the	activities	that	must	
be	carried	out	in	order	to	produce	VNFs	that	can	be	used	in	the	T-Nova	framework	are	also	
provided.	

In	 T-Nova,	 the	 VNF	management	 interface	 is	 technically	 implemented	 by	 only	 one	 of	 the	
VNFCs	 constituting	 the	 VNF.	 Such	 VNFC	 is	 in	 charge	 of	 distributing	 the	 lifecycle-related	
information	to	all	the	others	VNFCs	constituting	a	VNF.		

In	accordance	with	the	ETSI	Mano,	the	 interaction	between	VNFM	and	VNF,	 implementing	
the	 VNF	 lifecycle,	 is	 thoroughly	 described	 in	 the	 VNF	 Descriptor.	 In	 particular,	 the	 VNFD	
contains	a	section	called	"lifecycle_event",	which	provides	all	the	details	to	allow	the	VNFM	
to	interact	with	the	VNF	in	a	fully	automated	way.		

To	this	aim,	each	VNF	needs	to	be	able	 to	declare	various	 lifecycle	events	 (e.g.	start,	 stop,	
pause...).	For	each	of	those	events,	the	information	needed	to	configure	the	VNF	can	be	very	
different.	Moreover,	 the	 command	 to	 trigger	 the	 re-configuration	 of	 the	 VNF	 can	 change	
between	events.	To	support	the	different	events	each	one	needs	to	be	detailed	in	the	VNFD.	

The	 information	 related	 to	 the	VNF	 life-cycle	 is	 inserted	 in	 the	“lifecycle_event”	section	of	
the	VNFD.	In	particular,	in	such	a	section	the	following	information	is	available:	

• Driver:	 the	 protocol	 used	 for	 the	 connection	 between	 the	 VNF	Manager	 and	 the	
controlling	 VNFC.	 In	 T-Nova,	 two	 protocol	 can	 be	 used,	 the	 Secure	 Shell	 (ssh)	
protocol	and	the	http	protocol.		

• Authentication:	such	fields	specify	the	type	of	authentication	that	must	be	used	for	
the	connection,	and	some	specific	data	required	by	the	authentication	process	(e.g.	
a	link	to	the	private	key	injected	by	the	VNFM	at	startup).	

• Template	File	Format:	specifies	the	format	of	the	file	that	contains	the	information	
about	the	specific	lifecycle	event,	and	that	must	be	transferred	once	the	command	is	
run.	

• Template	File:	includes	the	name	and	the	location	of	the	Template	File.		
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• VNF	Container:	specifies	the	location	of	the	Template	File.	
• Command:	defines	the	command	to	be	executed		

2.1.7. VNF	Descriptor	(VNFD)	

As	 explored	 in	 the	 above	 sections,	 the	 VNFD	 plays	 an	 important	 role	 in	 the	 proper	
deployment	of	a	particular	VNF	in	the	NFVI	by	the	NFVO,	as	well	as	in	the	portability	of	the	
VNF	to	NFVI	variants.	This	section	attempts	a	specification	of	the	VNFD	as	used	currently	by	
T-NOVA.	The	refined	final	version	will	be	published	in	D.5.32.		

2.1.7.1.	 VNFD	Preamble	

The	 VNFD	 preamble	 provides	 the	 necessary	 information	 for	 the	 release,	 id,	 creation,	
provider	etc.	T-NOVA	extents	the	information	with	Marketplace	related	information	such	as	
trading	and	billing.		

	

	

2.1.8. Virtual	Deployment	Unit	(VDU)		

The	 vdu	 VNFD	 segment	 provides	 information	 about	 the	 required	 resources	 that	 will	 be	
utilised	 in	 order	 to	 instantiate	 the	VNFC.	 The	 configuration	 of	 this	 part	may	 be	 extremely	
detailed	and	complex	depending	on	the	platform	specific	options	that	are	provided	by	the	
developer.	However	 it	should	be	noted	that	the	more	specific	are	the	requirements	stated	

 
  release: "T-NOVA v0.2" # Release information 
  id: "52439e7c-c85c-4bae-88c4-8ee8da4c5485" # NFStore provides 
the rules, not know prior to uploading and cannot be referenced on 
time zero 
  provider: "NCSRD" # Provider(T-NOVA) - Vendor (ETSI) 
  provider_id: 23 # FP given by ID by the Marketplace 
  description: "The function identifies, classifies and forwards 
network traffic according to policies" 
  descriptor_version: "0.1" 
  version: "0.22" 
  manifest_file_md5: "fa8773350c4c236268f0bd7807c8a3b2" # 
Calculated by the NFStore during upload 
  type: "TC" 
  date_created: "2015-09-14T16:10:00Z" # Auto inserted at the 
Marketplace 
  date_modified: "2015-09-14T16:10:00Z" # Auto inserted at the 
Marketplace (to bechecked) 
  trade: true 
  billing_model: 
    model: "PAYG" # Valid Options are PAYG and Revenue Sharing 
(RS) 
    period: "P1W" # Per 1 week, e.g. P1D per 1 day 
    price: 
      unit: "EUR" 
      min_per_period: 5 
      max_per_period: 10 
      setup: 0 
	

	

Listing	1	VNFD	Preample	
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here	 the	 less	 portable	 the	 VNF	 might	 be,	 depending	 on	 the	 NFVO	 policies	 and	 the	 SLA	
specifications.	 It	 is	 assumed	 that	each	vdu	describes	effectively	 the	 resources	 required	 for	
the	virtualisation	of	one	VNFC.		

The	 listing	below	(Listing	2)	presents	a	snippet	of	 the	vdu	section	of	 the	VNFD	focusing	on	
the	IT	resources	and	platform	related	information.	Other	fields	may	also	be	noted	such	as:	i)	
Lifecycle	events	–	where	 the	drivers	 for	 interfacing	with	 the	VNF	controller	are	defined	as	
well	as	the	appropriate	commands	allocated	to	each	lifecycle	event;	ii)	scaling	–	defining	the	
thresholds	 for	 scaling	 in-out;	 and	 iii)	 VNFC	 related	 subsection	 where	 the	 networking	 and	
inter-VNFC	Virtual	Links	are	defined.			
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2.1.8.1.	 VNFC	subsection	

Listing	2	VNFD	vdu	section	

<snip> 
vdu: 
    - id: "vdu0" # VDUs numbered in sequence (TBD) 
      vm_image: "http://store.t-nova.eu/NCSRDv/TC_ncsrd.v.022.qcow" # URL 
that contains the 
      vm_image_md5: "a5e4533d63f71395bdc7debd0724f433" # generated by the 
NFStore 
 
      # VDU instantiation resources 
      resource_requirements: 
        vcpus: 2 
        cpu_support_accelerator: "AES-NI" # Opt. if accelarators are 
required 
        memory: 2 # default: GB 
        memory_unit: "GB" # MB/GB (optional) 
        memory_parameters: # Optional 
          large_pages_required: "" 
          numa_allocation_policy: "" 
        storage: 
          size: 20 # default: GB 
          size_unit: "GB" # MB/GB/TB (optional) 
          persistence: false # Storage persistence true/false 
        hypervisor_parameters: 
          type: "QEMU-KVM" 
          version: "10002|12001|2.6.32-358.el6.x86_64" 
        platform_pcie_parameters: # Opt. required if SR-IOV is used for 
graphics accelaration 
          device_pass_through: true 
          SR-IOV: true 
        network_interface_card_capabilities: 
          mirroring: false 
          SR-IOV: true 
        network_interface_bandwidth: "10Gbps" 
        data_processing_acceleration_library: "eg DPDK v1.0" 
        vswitch_capabilities: 
          type: "ovs" 
          version: "2.0" 
          overlay_tunnel: "GRE" 
      networking_resources:  
   average: “7Mbps” 
   peak: “10Mbps” 
   burst: “200KBytes” 
 
      #VDU Lifecycle enents 
      vdu_lifecycle_events: 
 
      # VDU Scaling config 
      scale_in_out: # number of instances for scaling allowed 
        minimum: 1 # min number of instances 
        maximum: 5 # max number of instances, if max=min then no scaling is 
allowed 
 
      # VNFC specific networking config 
      vnfc:tantiation parameters 
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This	 section	 of	 VNFD	 is	 related	 to	 the	 internal	 structure	 of	 the	 VNF	 and	 describes	 the	
connection	points	of	the	vdu	(name	id,	type)	and	the	virtual	links	where	they	are	connected.	
The	above	information	is	illustrated	in	the	provide	VNFD	listing	below.		

	

	

The	above	information	is	parsed	and	translated	to	HEAT	template	that	the	NFVI	VIM	based	
on	Openstack	is	able	to	parse	and	provide	accordingly	the	required	networks.	

2.1.9. Instantiation	parameters	

The	VNFD	enables	VNF	developers	to	thoroughly	describe	the	network	function	in	terms	of	
static	 and	 instantiation-specific	 parameters,	 or	more	 easily,	 instantiation	 parameters.	 The	
latter,	usually	apply	to	the	configuration	of	the	VNF	application	and	their	values	can	only	be	
known	 at	 runtime	 (e.g.	 IP	 addresses).	 Nevertheless,	 VNF	 developers	 still	 need	 to	 describe	
which	of	the	runtime	parameters	are	needed	and	where	they	are	needed.	For	these	cases,	
VNF	developers	can	use	one	of	two	available	mechanisms:		

• Get	 Attributes	 Function:	 cloud	 orchestration	 templates	 usually	 provide	 a	 set	 of	
functions	 that	 enable	 users	 to	 programmatically	 define	 actions	 to	 be	 performed	
during	 instantiation.	 For	 example,	 in	 HOT,	 the	 "get_attr"	 function	 allows	 the	
retrieval	of	a	resource	attribute	value	at	runtime;	

vnfc: 
        id: "vdu0:vnfc0" #incremental reference of VNFCs in the VDU 
 
        networking: 
          # Start of T-NOVA networking section 
          - connection_point_id: "mngt0" # for monitoring and management purposes 
            vitual_link_reference: "mngt" 
            type: "floating" # The type of interface i.e floating_ip, vnic, tap  
            bandwidth: "100Mbps" 
          - connection_point_id: "data0" # datapath interface 
            vitual_link_reference: "data" 
            type: "vnic" # The type of interface i.e floating_ip, vnic, tap  
            bandwidth: "100Mbps" 
...snipped ... 
      vlink: 
        # T-NOVA VL Section : relative to resources:networks HEAT template, 
subnets and dns information should be filled from the Orchestrator therefore are 
not put here.  
        - vl_id: "mngt" 
          connectivity_type: "E-Line" 
          connection_points_reference: ["vdu0:mngt0", "vnf0:mngt0"] 
          root_requirement: "10Gbps" 
          leaf_requirement: "10Gbps" # Used only for E-tree 
          qos: "BE"  
          test_access: "active" # Active: Use ext IP to be reached, Passive: L2 
access via steering, None: no access 
          net_segment: "192.168.1.0/24" #a-priori allocation by the system during 
approval of the VNFD. 
          dhcp: "TRUE" 
...snipped... 

Listing	3	VNFC	section	of	the	VNFD	
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• Cloud	 Init:	 cloud	 init	 is	a	 library	 supported	by	multiple	cloud	providers	 that	allows	
developers	 to	 configure	 services	 to	 be	 ran	within	VMs	 at	 boot	 time.	 In	 traditional	
IaaS	 environments	 it	 is	 commonly	 used	 to	 upload	 user-data	 and	 public	 keys	 to	
running	instances.		

Although	both	mechanisms	can	be	used	to	upload	deployment	specific	parameters	to	VNFs,	
they	are	 intrinsically	different	and	 it’s	up	 to	 the	VNF	developers	 to	decide	which	one	best	
suits	 their	 VNFs.	 In	 case,	 developers	 can	 also	 decide	 to	 use	 both	 mechanisms.	 The	 main	
functional	differences	between	these	two	are	summarized	in	Table	2.	

Table	2-A:	Methods	for	instantiation	parameter	upload		

Method		 When		 How		

"get_attr"		 In	any	momment	between	
the	 Deployment	 and	
Termination	 VNF	 lifecycle	
events	

The	 VIM	 provides	 the	 information	 to	
the	Orchestrator,	which	 forwards	 it	 to	
the	VNFM,	and	this	to	the	VNF	by	using	
the	middleware	API		

Cloud	 Init	 +	
Configuration	
Management	
Software	

At	the	VM	boot	time		 The	 VIM	 provides	 the	 information	
through	 the	 Openstack	 Metadata	 API	
which	is	collected	by	the	VM	after	Boot		

Get	Attributes  

This	 method	 is	 based	 on	 the	 "get_attr"	 function	 defined	 in	 HOT.	 This	 function	 works	 by	
referencing	 in	 the	 template	 the	 logical	 name	 of	 the	 resource	 and	 the	 resource-specific	
attribute.	The	attribute	value	will	be	resolved	at	runtime.	The	syntax	for	the	function	can	be	
found	at	[GetA]	and	is	as	follows:		
 { get_attr: [<resource_name>, <attribute_name>, <key/index 1>, 
<key/index 2>, …] } 
In	which:		

• resource_name:	The	resource	name	for	which	the	attribute	needs	to	be	resolved;	
• attribute_name:	 The	 attribute	 name	 to	 be	 resolved.	 If	 the	 attribute	 returns	 a	

complex	data	structure	such	as	a	list	or	a	map,	then	subsequent	keys	or	indexes	can	
be	specified.	These	additional	parameters	are	used	to	navigate	the	data	structure	to	
return	the	desired	value;	

• key/index	i:	…	

2.1.9.1.	 Cloud	Init	+	Configuration	Management	Software		

Another	complementary	approach	is	to	dissociate	the	actual	initialization	of	the	VM	and	its	
configuration	 through	 the	 middleware	 API.	 	 We	 delay	 the	 configuration	 of	 VNFC	 until	 a	
command	 is	 received	 at	 the	 VNF	 Controller	 level.	 Following	 an	 Infrastructure-as-code	
approach,	 the	 controller,	 when	 receiving	 a	 lifecycle	 event	 from	 the	mAPI,	 is	 in	 charge	 of	
enforcing	the	compliance	of	the	infrastructure	with	the	state	received	from	the	Orchestrator	
through	the	mAPI.	
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Figure	8.	Two-phase	VNF	configuration	

According	 to	 this	 technique,	 the	allocation	of	a	VNF	 is	carried	out	 in	 two	different	phases.	
The	 first	one	or	Bootstrapping	Phase,	handled	by	 cloud	 init,	 connects	 the	VM	 together	by	
sharing	 some	 very	 limited	 information	 revolving	 around	 networking	 (sharing	 of	 IP).	 The	
second	 one,	 the	 Configuration	 Phase,	 needs	 a	 configuration	management	 software	 being	
installed	 on	 the	 various	 VNFCs	 that	 "glue"	 them	 together	 and	 allow	 configuration	 being	
propagated	from	the	VNF	Controller	down	to	the	other	VNFCs.		

When	the	VNF	Controller	receives	a	lifecycle	event	(for	instance	start)	from	the	Middleware	
API,	it	will	implement	the	order	using	the	configuration	management	software	on	the	other	
VNFC.		

For	an	example	of	implementation	for	this	method,	please	refer	to	2.6.4.6.		

This	 approach	 brings	 more	 complexity,	 as	 it	 imposes	 using	 configuration	 management	
software,	 and	 the	VNF	 is	 responsible	 for	 applying	 the	 configuration.	However,	 it	 becomes	
valuable	when	considering	complex	VNF	with	several	VNFCs	and	scaling.	

2.1.10. Interaction	with	configuration	middleware	

The	main	advantage	of	having	a	middleware	to	transmit	commands	to	the	VNFs	is	being	able	
to	express	those	commands	in	a	technology-agnostic	way	in	the	VNFD.	

The	middleware	 API	 supports	multiple	 technologies	 to	 send	 instantiation	 information	 and	
trigger	state	changes	in	VNFs.	Currently	two	technologies	are	supported:		

• SSH		
• HTTP	REST-based	interface		

VNF	developers	 can	use	 the	VNFD	 to	define	 the	 templates	 that	hold	 the	 information	 (e.g.	
json	files)	and	the	commands	that	will	trigger	the	configuration	of	the	VNFs.	

The	specification	for	SSH	is	summarized	below:		

• Authentication:		
o Private-Key:	 a	 private-key	 is	 available	 in	 T-NOVA	 platform	 that	 enables	

authentication	 in	 virtual	 machines	 when	 using	 the	 SSH	 protocol.	 When	
deploying	the	virtual	machines	this	private	key	is	 injected	in	the	VM	by	the	
VIM.	
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• Operations:		
o Copy	 file	 to	 host:	 this	 operation	 allows	 the	 middleware	 API	 to	 send	 the	

configuration	 file	 to	 the	 VM.	 It	 enables	 the	 exchange	 of	 configuration	
parameters	with	the	VNFs;	

o Run	 remote	 command:	 this	 operation	 is	 used	 to	 trigger	 a	 lifecycle	
event/reconfiguration	of	 the	VNF.	With	 this	operation	VNF	developers	 can	
specify	 not	 only	 commands	 that	 should	 be	 run	 inside	 the	 VM	 but	 also	
scripts.		

The	specification	for	HTTP	is	summarized	below:		

• Authentication:		
o Basic	 access	 authentication:	 for	 T-NOVA,	 when	 using	 HTTP	 only	 basic	

authentication	will	be	supported.	This	authentication	is	realized	by	sending	a	
username	and	password	via	HTTP	header	when	making	a	request;	

• Operations:		
o File	upload:	 simple	HTTP	 file	upload	operation	using	"multipart/form-data"	

encoding	 type.	 POST	 and	 PUT	 operations	 must	 be	 supported	 to	 enable	 a	
single	step	operation	(upload	file	and	trigger	reconfiguration);	

o Send	 POST	 request:	 POST	 request	 only	 applies	 to	 the	 start	 operation	
following	the	RESTful	architecture	best	practices;	

o Send	 PUT	 request:	 PUT	 requests	 are	 used	 in	 all	 lifecycle	 events	 with	 the	
exception	of	the	"start"	event;	

o Send	DELETE	request:	this	request	will	map	in	the	"destroy"	lifecycle	event.	

2.1.11. Monitoring	

Collecting	monitoring	data	between	the	VNF	and	the	T-NOVA	architecture	is	a	major	task	in	
T-NOVA.	Both	System	metrics	that	are	non-VNF	specific	and	software	metrics	that	are	VNF	
specific	 are	 collected	 by	 the	 same	 database	 in	 the	 T-NOVA	 platform.	 In	 this	 section,	 the	
functionality	that	each	VNF	should	implement	in	order	to	push	data	monitoring	metrics	into	
the	monitory	database	is	described.		

2.1.11.1.	 System	Monitoring	

Monitoring	 of	 the	 system	 information	 is	 currently	 collected	 using	 the	 collectd	 agent	
[Collectd]	 that	 is	 installed	 and	 run	 on	 each	 VNFC.	 Metrics	 such	 as	 CPU,	 RAM,	 I/O	 are	
collected	on	a	VM-based	level	and	pushed	to	the	collectd	server.		

Other	options	including	using	Openstack	Ceilometer	to	collect	basic	system	information	are	
currently	considered	by	T4.4.	

2.1.11.2.	 VNF	Specific	Monitoring	

In	this	section,	two	methods	for	the	interaction	with	the	T-Nova	monitoring	framework	are	
presented.	

Simple	Monitoring	
The	 VNF	 developer	 should	 perform	 some	 monitoring	 specific	 developments	 during	 the	
implementation	 phase	 of	 the	 VNF	 in	 order	 to	 be	 T-NOVA	 compatible.	 Specifically,	 the	
following	steps	should	be	followed	by	the	VNF	developer:	

• Installation	of	Python	2;	
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• Copy	of	the	small	Python	script	provided	by	T-NOVA	to	be	called	when	monitoring	
data	is	to	be	sent;	

• The	monitoring	data	should	be	sent	to	the	monitoring	system	regularly	(for	example,	
through	the	use	of	a	cron	job);	

• Finally,	 the	 Python	 2	 script	 should	 be	 called	 to	 push	 the	 metrics	 in	 the	 T-NOVA	
database,	in	a	key-value	format.	

The	main	advantages	of	this	approach	are:	

1. It	 doesn't	 require	any	 specific	 installation	as	 long	as	Python	2	 is	 already	 installed,	
which	is	usually	installed	by	default	on	the	most	Linux	distributions;	

2. It	allows	VNF	developers	to	implement	their	own	way	on	how	metrics	are	collected	
from	 their	 application.	 For	 example,	 in	 the	 currently	 developed	 VNFs,	 one	
developer	queries	XML	files	with	XPath	to	output	tuples	(metric	name,	metric	value)	
and	 the	 python	 script	 is	 called	with	 those	metrics.	 Another	 developer	may	 parse	
logfiles	and	extract	relevant	data	with	some	custom	technology.		

The	main	drawback	is	the	necessity	to	support	the	Python	script	as	an	external	asset,	which	
is	 not	 acceptable	 from	professional	 developers	 if	 updated	 regularly,	 as	 it	must	be	 audited	
before	integration	to	the	final	solution.		

2.1.11.3.	 SNMP	Monitoring	

The	monitoring	data	can	be	exchanged	with	the	Monitoring	Manager	via	snmp	protocol.	This	
kind	 of	 interaction	 requires	 the	 installation	 of	 the	 snmp	 collectd	 agent	 in	 the	 Virtual	
Machine.	The	Monitoring	Manager	requests	metrics	by	sending	a	snmp	Get	Request	to	the	
Monitoring	 Agent.	 Typically	 UDP	 is	 used	 as	 a	 transport	 protocol.	 In	 this	 case,	 the	 Agent	
receives	Requests	on	UDP	port	161,	while	the	Manager	sends	Requests	 from	any	available	
source	port.	The	Agent	replies	with	a	snmp	GET	Response	to	the	source	port	of	the	Manager.		

An	example	of	these	procedures	is	depicted	in	Figure	9,	which	refers	to	the	vSBC.	In	this	case	
the	monitoring	 data	 are	 collected	 by	 the	 O&M	 component,	 acting	 as	 a	 snmp	Monitoring	
Agent.		
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Figure	9.	Monitoring	data	handling	(via	snmp)	in	case	of	vSBC	

Monitoring	data	 is	described	by	a	Management	 Information	Base	 (MIB).	This	MIB	 includes	
the	 VNF/VDU	 identifiers	 and	 uses	 a	 hierarchical	 namespace	 containing	 object	 identifiers	
(OIDs).	Each	OID	identifies	a	variable	that	can	be	read	via	snmp	protocol	(see	RFC	2578).	The	
snmp	GET	Request	contains	the	OIDs	to	be	sent	to	the	Monitoring	Manager	and	the	snmp	
GET	Response	contains	the	values	of	the	collected	data.		

Usually	 the	 time	 intervals	 between	 two	 consecutive	 collections	 of	monitoring	metrics	 are	
not	synchronized	with	the	snmp	Request	coming	from	the	Manager.	For	this	reason,	unless	
the	examined	metric	 isn’t	an	instantaneous	value,	the	VNF	returns	to	the	Manager	all	data	
evaluated	during	the	previous	monitoring	periods.	

As	an	example,	 if	 the	snmp	GET	Request	 is	 received	by	Monitoring	agent	at	17:27	and	the	
VNF	monitoring	period	is	5	minutes,	the	monitoring	data	sent	to	the	Manager	belong	to	the	
time	interval	“17:25	–>	17:30”.		

We	also	assumed	that:		

• The	generation	of	the	monitoring	data	is	active	by	default	inside	the	VNF;	
• The	 monitoring	 period	 of	 each	 metric	 is	 configured	 inside	 VNF	 components	 (i.e.,	

IBCF,	 BGCF	 in	 case	 of	 vSBC).	 If	 the	 frequency	 of	 the	 snmp	GET	 Request	 is	 greater	
than	 the	 VNF	 monitoring	 period,	 the	 same	 value	 is	 sent	 more	 than	 once	 to	 the	
requesting	Monitoring	Manager.	
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2.2. Virtual	Security	Appliance	

2.2.1. Introduction	

A	 Security	 Appliance	 (SA)	 is	 a	 “device”	 designed	 to	 protect	 computer	 networks	 from	
unwanted	traffic.	This	device	can	be	active	and	block	unwanted	traffic.	This	 is	 the	case	for	
instance	of	 firewalls	and	content	 filters.	A	security	Appliance	can	also	be	passive.	Here,	 its	
role	 is	 simply	detection	and	 reporting.	 Intrusion	Detection	Systems	are	a	good	example.	A	
virtual	Security	Appliance	(vSA)	is	a	SA	that	runs	in	a	virtual	environment.		

In	the	context	of	T-NOVA,	we	have	suggested	a	virtual	Security	Appliance	(vSA)	composed	of	
a	firewall,	an	Intrusion	Detection	System	(IDS)	and	a	controller	that	links	the	activities	of	the	
firewall	and	the	IDS.	The	vSA	high	level	architecture	was	discussed	in	details	in	[D5.01].		

2.2.2. Architecture	

The	idea	behind	the	vSA	is	to	let	the	IDS	Analyze	the	traffic	targeting	the	service	and	if	some	
traffic	looks	suspicious,	the	controller	takes	a	decision	by,	for	instance,	revising	the	rules	in	
the	firewall	and	block	this	traffic.		

The	architecture	of	 this	appliance	 is	depicted	 in	Figure	10	and	 includes	 the	 following	main	
components.	

	

	
Figure	10.	vSA	high-level	architecture.	

2.2.3. Functional	description	

The	components	of	the	architecture	are	the	following:	

• Firewall:	this	component	is	in	charge	of	filtering	the	traffic	towards	the	service.		
• Intrusion	 Detection	 System	 (IDS):	 in	 order	 to	 improve	 attack	 detection,	 a	

combination	 of	 a	 packet	 filtering	 firewall	 and	 an	 intrusion	 detection	 system	 using	
both	signatures	and	anomaly	detection	is	considered.	In	fact,	Anomaly	detection	IDS	
has	 the	 advantage	 over	 signature	 based	 IDS	 in	 detecting	 novel	 attacks	 for	 which	
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signatures	do	not	exist.	Unfortunately,	anomaly	detection	IDS	suffer	from	high	false-
positive	 detection	 rate.	 It	 is	 expected	 that	 combining	 both	 arts	 of	 detection	 will	
improve	 detection	 and	 reduce	 the	 number	 of	 false	 alarms.	 In	 T-NOVA,	 the	 open	
source	signature	based	IDS	[SNORT]	 is	being	used	and	will	be	extended	to	support	
anomaly	detection	as	well.	The	mode	of	operation	of	 the	 IDS	component	was	also	
discussed	in	deliverable	[D5.01];	

• FW	Controller:	 this	application	 looks	 into	 the	 IDS	"alerts	 repository"	and	based	on	
the	related	information,	the	rules	of	the	firewall	are	revised.	Figure	11		depicts	a	part	
of	the	FW	Controller	code.	

	
Figure	11.	A	sample	of	code	of	the	FW	Controller	

• Monitoring	Agent:	this	is	a	script	that	reports	to	the	monitoring	server	the	status	of	
the	VNF	 through	 some	metrics	 such	as	 (Number	of	errors	 coming	 in/	going	out	of	
the	 wan/lan	 interface	 of	 pfsense,	 Number	 of	 bytes	 coming	 in/	 going	 out	 of	 the	
wan/lan	 interface	of	pfsense,	CPU	usage	of	snort,	Percent	of	 the	dropped	packets,	
generate	by	snort,	etc);	

• vSA	controller:	this	is	the	application	in	charge	of	the	vSA	lifecycle	(for	more	details	
please	refer	to	section	2.1.1.).	
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2.2.4. Interfaces	

The	different	components	of	the	architecture	interact	in	the	following	way,		

1. data	packets	are	 first	of	all	 filtered	by	 the	 firewall	 (ingress	 interface)	before	being	
forwarded	to	the	service	(egress	interface);	

2. filtered	 data	 packets	 are	 sniffed	 by	 the	 IDS	 for	 further	 inspection	 (internal	
interface).	 The	 IDS	 will	 monitor	 and	 analyze	 all	 the	 services	 passing	 through	 the	
network;	

3. data	 packets	 go	 through	 a	 signature	 based	 procedure.	 This	 will	 help	 in	 detecting	
efficiently	well	know	attacks	such	as	port	scan	attacks	and	TCP	SYN	flood	attacks;	

4. If	 an	 attack	 is	 detected	 at	 this	 stage,	 an	 alarm	 is	 generated	 and	 the	 firewall	 is	
instructed	to	revise	its	rules	(internal	interface);	

5. If	no	attack	is	detected,	no	further	action	is	required.	

In	 addition	 to	 that,	 there	 are	 two	 extra	 interfaces:	 the	 first	 one	 is	 in	 charge	 of	 the	 vSA	
lifecycle	management,	 and	 the	 second	 one	monitors	 the	 status	 of	 the	 vSA	 and	 sends	 the	
related	information	to	the	monitoring	server.		

2.2.5. Technologies	

As	 performance	 is	 one	 of	 the	 main	 issues	 when	 deploying	 software	 versions	 of	 security	
appliances,	we	started	by	providing	a	short	evaluation	of	firewalls	software	that	could	run	in	
virtual	environments.	The	idea	was	not	to	go	through	all	the	relevant	existing	software	but	
just	the	most	popular	ones	that	could	be	extended	to	fulfill	the	use	case	requirements.	This	
evaluation	 was	 described	 in	 [D5.01].	 It	 turns	 out	 that	 the	 open	 source	 firewalls	 that	 are	
richer	 and	more	 complete	 are	Vyatta	VyOS	 and	pfSense	 (please	 refer	 to	 [D5.01]	 for	more	
details).	 In	addition	 to	 that,	VyOS	 seems	 to	 support	REST	APIs	 for	 configuration	which	are	
important	in	the	integration	with	the	rest	of	the	T-NOVA	framework.	

These	two	options	were	also	evaluated	from	the	performance	point	of	view	and	the	results	
are	discussed	 in	 section	2.3.6.	Based	on	 this	assessment,	 the	pfSense	 firewall	 seems	 to	be	
the	best	option	to	be	used	within	the	vSA.			

2.2.6. Dimensioning	and	Performance	

To	 study	 the	 performance	 of	 firewalls,	 appropriate	 metrics	 are	 needed.	 Although	 the	
activities	in	this	area	are	very	scarce,	we	described	in	D5.01,	potential	metrics	that	could	be	
used.	This	includes,	throughput,	latency,	jitter,	and	goodput.		

2.2.6.1.	 Testbed	setup		

For	 simplicity	 reasons,	we	 have	 used	 Iperf	 [IPERF]	 for	 generating	 IP	 traffic	 in	 our	 tests.	 In	
fact,	other	 IP	 traffic	generators	such	as	D-ITG	 [DITG],	ostinato	 [Ostinato],	and	 IPTraf	 [IPTR]	
could	have	also	been	utilized.	Iperf	mainly	generates	TCP	and	UDP	traffic	at	different	rates.	
Diverse	 loads	 (light,	 medium,	 heavy)	 and	 different	 packet	 sizes	 are	 also	 considered.	 For	
analyzing	 IP	 traffic,	 we	 used	 “tcpdump”	 for	 capturing	 it	 and	 “tcptrace”	 to	 analyse	 it	 and	
generate	statistics.	As	for	the	virtualization,	VirtualBox	[VBOX]	was	used.		

To	run	our	tests,	we	decided	to	use	two	hosts.	On	the	first	one,	we	have	installed	the	Iperf	
client	and	server	and	on	the	second	one,	we	have	setup	the	firewall	under	tests.	This	setup	
is	in	fact	in	line	with	the	recommendations	provided	in	RFC	2647.	
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2.2.6.2.	 Testing	scenarios		

The	undertaken	tests	are	based	on	three	main	scenarios,		

1. No	 firewall:	 Here,	we	 configure	 and	 check	 the	 connectivity	 between	 the	 Iperf	
client	 and	 server	 without	 a	 firewall	 in	 between.	 This	 enables	 us	 to	 test	 the	
capacity	of	the	communication	channel		

2. TCP	traffic	with	firewall	and	no	rules:	Here,	we	check	whether	the	introduction	
of	 a	 firewall	 (running	 on	 a	 virtual	machine	 in	 between)	 generates	 extra	 delay.	
We	also	test	the	capacity	of	the	firewall	in	this	context		

3. With	firewall	and	increasing	number	of	rules:	the	objective	of	this	scenario	is	to	
study	 the	effect	of	 introducing	rules	 into	 the	 firewall.	To	achieve	 this	scenario,	
some	scripts	for	both	pfsense	and	Vyos	are	implemented	to	generate	rules	in	an	
automatic	 way.	 The	 scripts	 are	 shell	 scripts	 using	 specific	 API	 commands	 and	
generate	blocking	rules	for	random	source	IP	addresses	(excluding	those	used	in	
the	 test	 setup)	 and	 the	 WAN	 interface.	 For	 pfsense,	 the	 easyrule	 function	 is	
extended	and	for	VyOS,	the	“configure”	environment	(set	of	commands)	is	used.	
In	this	scenario,	some	tests	are	also	performed	using	UDP	instead	of	TCP	

2.2.6.3.	 Tests	results		

When	 no	 firewall	 is	 used	 between	 the	 Iperf	 client	 and	 server,	 one	 can	 note	 that	 the	
throughput	 of	 the	 communication	 remains	 good	 (700	 Mbit/s)	 as	 long	 as	 the	 number	 of	
parallel	connections	does	not	exceed	7	connections.	When	the	number	of	connections	goes	
beyond	this	value,	the	throughput	decreases	very	fast	to	reach	0	when	20	connections	are	
opened	(Figure	12,	Figure	14).	One	can	also	notice	that	the	Round	Trip	Time	(RTT)	is	severely	
affected	when	 increasing	 the	 number	 of	 connections	 between	 the	 Iperf	 client	 and	 server	
(Figure	13,	Figure	15).		

	

	
Figure	12.	Throughput	without	firewall	
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Figure	13.	RTT	without	firewall	

	

	

	
Figure	14.	Firewall	comparison	without	rules	(Throughput)		
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Figure	15.	Firewall	comparison	with	10	rules	(RTT)		

	

The	results	obtained	from	a	firewall	(pfsense	or	Vyos)	being	settled	between	the	Iperf	client	
and	server,	the	variation	of	the	throughput	and	the	RTT	are	depicted	in	Figure	14	and	Figure	
15,	respectively.	One	can	note	that	pfsense,	in	both	cases,	presents	a	more	stable	behavior	
when	the	number	of	connections	increases.			

2.2.7. Future	Work	

The	next	steps	are	the	following,		

• Move	all	 components	 to	one	single	VM,	as	using	an	OVS	 in	a	 separate	VM	for	 IDS	
integration	is	not	feasible,	due	to	OpenStack	limitations;		

• Complete	monitoring	integration;	
• Create	Heat	template;	
• Create	VNF	descriptor.	

2.3. Session	Border	Controller	

2.3.1. Introduction	

A	 Session	 Border	 Controller	 ﴾SBC)	 is	 typically	 a	 standalone	 device	 providing	 network	
interconnection	and	security	services	between	two	 IP	networks.	 It	operates	at	 the	edge	of	
these	 networks	 and	 is	 used	 whenever	 a	 multimedia	 session	 involves	 two	 different	 IP	
domains.	It	performs:		

• the	session	control	on	the	“control”	plane,	adopting	SIP	as	a	signalling	protocol;	
• several	 functions	 on	 the	 “media”	 plane	 (i.e	:	 transcoding,	 transrating,	 NAT,etc),	

adopting	Real	time	Transport	Protocol	(RTP)	for	multimedia	content	delivery.	

The	vSBC	is	the	VNF	implementing	the	SBC	service	in	T-NOVA	virtualized	environment,	and	it	
is	a	prototyped	version	of	the	commercial	SBC	that	Italtel	is	developing	for	the	NFV	market.	
General	requirements	for	vSBCs	comprise	both	essential	features	(such	as:	IP	to	IP	network	
interconnection,	SIP	signaling	proxy,	Media	flow	NAT,	RTP	media	support)	and	also	advanced	
requirements	 (such	 as	:	 SIP	 signaling	 manipulation,	 real-time	 audio	 and/or	 video	
transcoding,	 Topology	 hiding,	 Security	 gateway,	 IPv4-IPv6	 gateway,	 generation	 of	metrics,	
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etc.).	 For	 the	 objectives	 of	 the	 T-NOVA	 project,	 we	 focus	 on	 all	 essential	 features	 and	 a	
subset	 of	 advanced	 requirements	 (i.e:	 IPv4-IPv6	 gateway;	 real-time	 audio	 and/or	 video	
transcoding	for	mobile	and	fixed	network;	metrics	generation;	etc).	

2.3.2. Architecture	

The	basic	architecture	of	the	virtualized	SBC	is	depicted	in	Figure	16.	

	
Figure	16.	Basic	vSBC	internal	architecture.	

The	basic	vSBC	consists	mainly	of:		

• four	 Virtual	 Network	 Function	 Components	 (VNFCs)	:	 LB,	 IBCF,	 BGF	 and	
O&M	(described	in	detail	below);	

• four	NICs;	
• one	Management	interface	(T-Ve-Vnfm)		:	it	transports	the	HTTP	commands	

of	T-Nova	lifecycle	from	the	VNFM	to	the	O&M	component;	
• one	Monitoring	 Interface	:	 the	 monitoring	 data,	 produced	 by	 the	 internal	

VNFCs	(i.e:	IBCF	and	BGF),	are	collected	by	the	O&M	and	are	cyclically	sent	
(via	 snmp)	 to	 the	 T-NOVA	Monitoring.	 See	 also	 Task	 4.4	 (Monitoring	 and	
Maintenance)	for	further	details.	

The	enhanced	architecture	of	the	virtualized	SBC	comprises	also	the	DPS	component.	This	
additional	component,	described	in	detail	in	the	following	paragraph,	is	based	on	DPDK	
acceleration	technology	and	can	provide	high	speed	in	processing	the	addressing	
information	in	the	header	of	IP	packets.	The	following	Figure	17	depicts	the	enhanced	
architecture	of	the	vSBC.  
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Figure	17.	Enhanced	vSBC	internal	architecture	(with	DPS	component).	

The	enhanced	vSBC	architecture	consists	of:		

• five	Virtual	Network	Function	Components	(VNFCs)	:	DPS,	LB,	IBCF,	BGF	and	
O&M	(described	in	detail	below);	

• two	NICs	in	case	the	signalling	and	media,	incoming	and	outgoing,	are	
handled	by	DPS	with	the	same	NIC;	

• one	Management	interface	(T-Ve-Vnfm),	as	described	in	the	basic	
architecture;	

• one	Monitoring	Interface,	as	described	in	the	basic	architecture.		

2.3.3. Functional	description	

• Load	Balancer	(LB):	it	balances	the	incoming	SIP	messages,	forwarding	them	to	
the	appropriate	IBCF	instance.		

• Interconnection	Border	Control	Function	(IBCF):	it	implements	the	control	
function	of	the	SBC.	It	analyzes	the	incoming	SIP	messages,	and	handles	the	
communication	between	disparate	SIP	end-point	applications.	The	IBCF	extracts	
from	incoming	SIP	messages	the	information	about	media	streams	associated	to	
the	SIP	dialog,	and	instructs	media	plane	components	(DPS	and/or	BGF)	to	
process	them.	It	can	also	provide:		

• SIP	message	adaptation	or	modification,	enabling	in	this	way	the	
interoperability	between	the	interconnected	domains		

• topology	hiding	(IBCF	hides	all	incoming	topological	information	to	the	
remote	network)		

• monitoring	data	(IBCF	can	send	this	information	to	the	T-NOVA	
monitoring	agent)		
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• other	security	features.		

• Border	 Gateway	 Function	 (BGF):	 it	 processes	 media	 streams,	 applying	
transcoding	 and	 transrating	 algorithms	 when	 needed	 (transcoding	 transforms	
the	algorithm	used	for	coding	the	media	stream,	while	transrating	changes	the	
sending	 rate	 of	 IP	 packets	 carrying	 media	 content).	 This	 feature	 is	 used	
whenever	the	endpoints	of	the	media	connection	support	different	codecs,	and	
it	is	an	ancillary	function	for	an	SBC	because,	in	common	network	deployments,	
only	 a	 limited	 subset	 of	 media	 streams	 processed	 by	 the	 SBC	 need	 to	 be	
transcoded.	The	BGF	is	controlled	by	the	IBCF	using	the	internal	BG	ctrl	interface	
(see	 Figure	 16).	 If	 the	 transcoding	 /transrating	 function	 is	 implemented	 by	 a	
pure	 software	 transcoder	 its	 performance	 dramatically	 decreases,	 unless	 GPU	
(Graphical	 Processing	 Units)	 hardware	 acceleration	 is	 available	 in	 the	 virtual	
environment.	 Otherwise	 this	 issue	 could	 be	 mitigated	 by	 running	 more	 BGF	
instances.	 The	 BGF	 component	 can	 also	 provide	 metrics	 to	 the	 T-NOVA	
monitoring	agent;	

• Operating	 and	 Maintenance	 (O&M):	 it	 supervises	 the	 operating	 and	
maintenance	 functions	 of	 the	 VNF.	 In	 a	 cloud	 environment,	 the	O&M	module	
extends	 the	 traditional	 management	 operations	 handled	 by	 the	 Orchestrator	
(i.e.:	scaling).	The	O&M	component	interacts	(via	HTTP)	with	the	VNF	manager,	
using	 the	 T-Ve-Vnfm	 interface	 depicted	 in	 Figure	 16,	 for	 applying	 the	 T-NOVA	
lifecycle;	

• Data	Plane	Switch	 (DPS):	 it	 is	 the	 (optional)	 front-end	component	of	 the	vSBC	
based	 on	 DPDK	 acceleration	 technology	 available	 in	 Intel	 x86	 architectures	 to	
reach	a	performance	level	comparable	to	the	hardware	based	version	adopting	
HW	acceleration	technologies.	This	component	can	use	the	same	IP	address,	as	
ingress	or	egress	point,	both	for	signalling	and	media	flows.	Its	goal	is	to	provide	
high	 speed	 in	 processing	 the	 addressing	 information	 in	 the	 header	 of	 the	 IP	
packet,	 leaving	 untouched	 the	 payload.	 The	 DPS	 is	 instructed	 how	 to	manage	
the	IP	packets	by	the	IBCF	component,	acting	as	an	external	controller	using	an	
internal	dedicated	DPS	ctrl	interface	(see	Figure	17﴿ .	The	DPS	component	can:		

o either	providing	the	packet	forwarding	to	the	BGF	(in	case	of	transcoding)		
o or	applying	a	local	Network	Address	Translation	﴾NAT﴿ /port	translation		

Note:	DPS	may	be	on	optional	component	of	the	vSBC.	In	this	case	the	LB	
component	acts	as	the	front-end	of	the	VNF,	of	course	with	poorer	performances.	

2.3.4. Interfaces	

The	most	relevant	internal	and	external	interfaces	depicted	in	Figure	16	are:		

1. DSP	ctrl:	this	(enhanced)	internal	interface	instructs	the	Data	Plane	Switch	(DPS)	to	
perform	the	incoming	media	packet	(forwarding	them	to	the	BGF,	or	applying	NAT).	
It	is	used	only	in	case	of	the	enhanced	vSBC;	

2. BG	 ctrl:	 this	 internal	 interface	 instructs	 the	 Border	 Gateway	 Function	 (BGF)	 to	
perform	media	stream	transcoding/transrating	between	two	codecs;	

3. Management	Interface	(T-Ve-Vnfm):	 it	 is	used	to	transport	the	HTTP	commands	of	
the	T-NOVA	lifecycle	(i.e:	start,	stop,	destroy,	scale	in/out,	etc).	It’s	supported	by	the	
O&M	component;	
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4. Monitoring	Interface:	the	monitoring	data,	produced	by	the	internal	VNFCs	(i.e:	IBCF	
and	BGF),	 are	 collected	by	 the	O&M	and	 cyclically	 sent	 (via	 snmp)	 to	 the	 T-NOVA	
Monitoring	Manager.	

2.3.5. Technologies	

The	development	of	the	vSBC	is	based	on	the	use	of:		

• Linux	operating	system		
• KVM	hypervisor		

Services	 provided	 by	 telecommunication	 networks	 greatly	 differ	 from	 standard	 IT	
applications	 running	 in	 the	 cloud	 in	 terms	of	 carrier	 grade	availability	 and	high	processing	
throughputs.	For	this	reason:		

• the	 pure	 software	 implementation,	 in	 some	 scenarios,	 shall	 be	 complemented	 by	
acceleration	technologies	available	also	in	cloud	environments.	For	example	the	DPS	
component	 uses	 the	 DPDK	 acceleration	 technology	 (available	 in	 Intel	 x86	
architectures)	to	provide	high	speed	in	processing	the	addressing	information	in	the	
header	of	IP	packet;	

• the	transcoding/transrating	feature,	provided	by	the	BGF	component,	benefits	from	
GPU	 acceleration,	 so	 that	 a	 real	 time	 transcoding	 and	 a	 fixed	 video-rate	 can	 be	
guaranteed	during	the	whole	audio/video	session.	The	GPU	encoding	algorithms	are	
able	 to	 efficiently	 exploit	 the	 potential	 of	 all	 available	 cores.	 The	 overall	 system	
consists	of	a	commercial	GPU	board	[Nvidia],	hosted	in	a	PCIe	bay.	The	transcoding	
will	be	performed	and	tested	between	domains	using	the	most	common	codecs	(i.e:	
Google’s	VP8	and	ITU-T	H.264). 

2.3.6. Dimensioning	and	Performance	

The	vSBC	performances	can	be	monitored	using	the	metrics	generated	by	its	internal	VNFCs	
(see	also	[D4.41]	for	further	information),	for	example:	

1. monitoring	 data	 related	 to	 the	 control	 plane:	 total	 number	 of	 SIP	
sessions/transactions,	 number	 of	 failed	 SIP	 sessions/transactions	 due	 to	 vSBC	
internal	problems;	

2. monitoring	 data	 related	 to	 the	 media	 plane:	 incoming/outgoing	 RTP	 data	
throughput,	 RTP	 frame	 loss,	 latency,	 inter-arrival	 jitter,	 number	 of	
transcoding/transrating	 procedures,	 number	 of	 failed	 transcoding/transrating	
procedures	due	to	vSBC	internal	problems;	

3. base	 monitoring	 data:	 percentage	 of	 memory	 consumption,	 percentage	 of	 CPU	
utilization.		

These	monitoring	data	are	strongly	affected	by:		

• packet	sizes;	
• kinds	of	call	(i.e:	audio	or	video	calls);	
• audio/video	codecs	(i.e:	H.264,	VP8,	…);	
• transport	protocols	(i.e:	UDP	and	TCP).		

At	the	moment	we	don’t	have	data	related	to	the	performance	of	the	vSBC.	Nevertheless	we	
have	target	requirements	about	the	expected	behaviour	of	 its	 internal	VNFCs.	For	example	
IBCF	and	BGF	components	provide	market	sensitive	performances:	IBCF	shall	support	up	to	a	
certain	number	of	simultaneous	SIP	sessions	(i.e:	10,	25,	50,	100,	500,	1000),	while	the	BGF	
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up	to	a	certain	number	of	simultaneous	transcoding/transrating	operations	(i.e:	20).	For	this	
reason,	in	the	commercial	product,	each	component	size	will	be	associated	to	a	license	fee.		

2.3.6.1.	 vSBC	testing		

These	tests/implementations	have	been	carried	out	so	far:		

• Creation	of	a	JSON	descriptor	for	the	vSBC;	
• Creation	of	a	HEAT	template	(Hot)	for	the	vSBC;	
• Instantiation	of	the	vSBC,	using	the	HEAT	template,	in	an	Italtel	test	bed.	

These	further	scenarios	will	be	tested	in	the	following	development	steps:		

• Support	of	the	following	T-NOVA	lifecycle	events	(using	a	HTTP	REST-based	interface	
and	a	basic	access	authentication):	

• Start	(via	http	POST)	
• Stop	(via	http	PUT),	both	immediate	and	graceful1	
• Destroy	(via	http	DELETE)		

• Basic	audio	sessions	(without	trascoding),	using	the	most	common	audio	codecs	(i.e:	
G711,	G729,	…);	

• Basic	video	sessions	(without	trascoding),	using	the	most	common	video	codecs	(i.e:	
H248,	VP8,	…);	

• Audio	sessions	with	transcoding	(for	example	G711	<->	G729);	
• Video	sessions	with	transcoding	(for	example	H248	<->	VP8)	:	

• without	GPU		
• with	GPU(NVIDIA	family).		

The	 requested	 transcoding	 may	 be	 mono-directional	 (i.e:	 audio/video	 stream	
distribution)	 or	 bidirectional	 (i.e.:	 videoconferencing	 applications).	 The	 supported	
video	resolution	may	be	:		

• PAL	(576x720)		
• 720p	(1280x720)		
• HD	(1920x1080)		
• 4k	(3840x2160)		

We	will	check	whether	the	introduction	of	a	GPU	accelerator	increases	the	number	
of	 simultaneous	 video	 transcoding	 sessions	 offered	 by	 the	 vSBC.	 The	
encoding/decoding	procedures	must	be	handled	in	a	real-time	way	(at	least	30	fps)	
and	with	a	fixed	frame-rate	during	the	whole	video	session.	

• Insertion,	inside	the	basic	vSBC	architecture,	of	the	new	DPS	component	in	order	to	
optimize	NAT	scenarios	without	transcoding.	The	aim	is	to	test	and	compare	
performances	of	the	basic	architecture	with	those	ones	offered	by	the	new	DPS	
component;	

																																																													
1	 Note:	 this	 lifecycle	 event	 will	 be	 handled	 in	 an	 immediate	 or	 graceful	 mode	
according	to	a	specific	vSBC	internal	data.		
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• Test	the	proper	evaluation	of	monitoring	parameters,	both	for	media	and	control	
plan,	generated	by	the	internal	VNFCs	in	all	scenarios	previously	described;	

• Scale-in	scenario;	
• Scale-out	scenario.	

2.3.7. Future	Work	

Future	work	objectives:		

1. to	complete	the	harmonization	about	the	vSBC	interfaces	with	the	other	
components	of	T-NOVA	project	(i.e:	VNF	manager);	

2. to	insert	a	GPU	accelerator	for	trascoding/transrating	procedures;	
3. to	test	the	two	most	innovative	components	of	vSBC	(DPS	and	BGF)	in	a	deployment	

scenario	with	and	without	hardware/software	accelerators	available;	
4. to	complete	the	implementation	of	the	monitoring	parameters,	used	both	for	

scaling	procedures	(in/out)	and	for	SLA	analysis;	
5. to	clarify	the	scale	in/out	scenarios;	

2.4. Video	Transcoding	Unit	

2.4.1. Introduction	

The	vTU	provides	the	transcoding	function	for	the	benefit	of	many	other	VNFs	for	creating	
enhanced	services.	

2.4.2. Architecture	

2.4.2.1.	 Functional	description	

The	 core	 task	 of	 the	 Video	 Transcoding	 Unit	 is	 to	 convert	 video	 streams	 from	 one	 video	
format	to	another.	Depending	on	the	applications,	the	source	video	stream	could	originate	
from	a	file	within	a	storage	facility,	as	well	as	coming	in	from	of	a	packetized	network	stream	
from	another	VNF.	Moreover,	 the	 requested	 transcoding	 could	 be	mono-directional,	 as	 in	
applications	 like	 video	 stream	 distribution,	 or	 bi-directional,	 like	 in	 videoconferencing	
applications.		

 

Figure	18.	Functional	description	of	the	vTU	
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Having	 this	 kind	 of	 applications	 in	 mind,	 it	 is	 clear	 that	 the	 most	 convenient	 overall	
architecture	 for	 this	 Unit	 is	 a	modular	 architecture,	 in	 which	 the	 necessary	 encoding	 and	
decoding	functionalities	are	deployed	as	plug-in	within	a	“container”	Unit	taking	care	for	all	
the	communication,	 synchronization	and	 interfacing	aspects.	 In	order	 to	 find	a	 convenient	
approach	 for	 the	 development	 of	 the	 vTU	 architecture,	 an	 investigation	 has	 been	 carried	
out,	about	 the	state	of	 the	art	of	any	available	 software	 framework	 that	could	be	usefully	
employed	as	starting	point	for	this	architecture.	This	investigation	has	identified	avconv,	the	
open-source	 audio-video	 library	 under	 Linux	 environments	 (https://libav.org/avconv.html),	
as	the	best	choice	for	the	basic	platform	for	the	vTU,	as	it	is	open-source,	it	is	modular	and	
customizable,	 and	 it	 contains	most	 of	 the	 encoding/decoding	 plug-ins	 that	 this	 VNF	 could	
need.	

In	order	to	define	the	functionalities	that	best	fit	to	the	needs	of	the	target	applications	for	
the	vTU,	a	survey	has	been	carried	out,	searching	for	the	most	diffused	video	formats	that	
should	 therefore	 be	 present	 as	 encoding/decoding	 facilities	 in	 the	 vTU.	 This	 analysis	 has	
shown	that	the	following	video	formats	should	be	primarily	considered:		

• ITU-T	H.264	(aka	AVC)		
• Google’s	VP8		

and	the	following	ones	would	be	also	highly	desirable,	especially	in	the	future:		

• ITU-T	H.265	(aka	HEVC)		
• Google’s	VP9.		

Once	the	video	formats	of	interest	are	defined,	the	whole	panorama	of	the	available	codecs	
have	been	considered	and	evaluated,	 in	order	to	 identify	tools	which	could	be	successfully	
employed	 in	 the	 Unit	 and	 those	 which	 could	 be	 possibly	 used	 as	 development	 basis.	 A	
synthesis	of	the	available	panorama	is	shown	in	the	following	table:		

 

The	analysis	evidenced	that	the	choice	of	avconv	as	the	starting	development	framework	is	
most	appropriate	in	terms	of	already-available	codecs.		

From	the	point	of	view	of	performance,	however,	avconv	could	be	unable	to	fulfil	the	needs	
of	 the	 vTU,	 as	 all	 the	 endoders/decoders	 provided	 therein	 do	 not	 make	 any	 use	 of	 HW	
acceleration	 facilities.	 Performance,	 in	 terms	 of	 encoding/decoding	 speed,	 is	 actually	 of	
crucial	importance	in	the	vTU,	as	in	all	online	applications,	a	fixed	video	frame-rate	must	be	
guaranteed	during	the	whole	video	session.		

For	this	reason,	a	performance	analysis	of	all	available	codecs	has	been	carried	out.	Several	
of	them,	in	fact,	are	able	to	exploit	hardware	acceleration	facilities,	like	GPU’s	or	MMX/SSEx	
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instructions,	 whenever	 they	 are	 available.	 The	 tests	 have	 been	 carried	 out	 considering	 a	
typical	scenario	for	the	underlying	hardware	infrastructure:	a	Xeon	server	with	8	cores	(2	x	
4-cores)	Xeon	E5-2620v3,	equipped	with	GPU	 facility	 (1	NVIDIA	GeForce	GTX	980).	Several	
video	test	sequences	have	been	considered,	at	the	most	common	resolutions.	The	obtained	
results,	 in	 terms	of	achieved	encoded/decoded	 frames	per	 second,	are	 summarized	 in	 the	
following	 tables,	 for	 PAL	 (576x720	 pixel),	 720p	 (1280x720),	 HD	 (1920x1080)	 and	 4k	
(3840x2160)	resolutions:	

 

 

Based	on	the	obtained	results,	the	following	observations	can	be	drawn:		

• As	 expected,	 encoding	 is	much	more	 time-consuming	 than	 decoding.	 On	 average,	
decoding	is	approximately	20	times	faster	than	encoding,	for	the	same	format.	The	
consequence	is	that	encoders	represent	the	bottleneck	to	performance	in	a	vTU.	For	
what	decoding	 concerns,	 the	 tested	 tools	have	performed	 faster	 than	30	 fps	 in	all	
situations,	at	least	for	H264	and	VP8	standards,	which	are	those	currently	use;	

• Hardware-accelerated	 tools	 are	 not	 only	 providing	much	 better	 performance	 than	
CPU-based	ones,	as	visible	in	the	tables	for	all	resolutions,	but	is	necessary	in	some	
cases,	e.g.	for	4k	resolutions,	where	standard	algorithms	are	not	able	to	reach	30	fps	
encoding	speed	and	therefore	could	not	support	a	real-time	transcoding	session;	

• As	highlighted	in	the	first	table,	different	hardware	accelerators	can	be	successfully	
exploited	 to	 speed-up	 the	 encoding	 process	 –	 not	 only	 GPU’s.	 In	 particular,	 X264	
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performs	significantly	better	using	Assembly-level	optimizations	which	exploit	SIMD	
instructions	(MMX/SSE),	than	delegating	computation	to	GPU	cores.	

This	 is	due	to	the	fact	that	encoding/decoding	algorithms	cannot	be	massively	parallelized,	
for	two	main	reasons:	a)	there	are	strong	sequential	correlations	and	many	spatial/temporal	
dependencies	within	the	computation,	and	b)	the	limited	extent	of	parallelism	needed	in	all	
situations	 where	 data	 parallelism	 could	 be	 applied	 (e.g.	 computing	 DCT/IDCT	 for	 a	
macroblock).	 Nevertheless,	 the	 huge	 computing	 power	 of	 modern	 GPU’s	 makes	 it	
reasonable	 to	 focus	 the	 research	 effort	 towards	 the	 development	 of	 GPU-accelerated	
encoding	algorithms,	able	to	efficiently	exploit	the	potential	of	all	available	cores.	Therefore,	
as	shown	in	the	table	above,	the	first	goal	on	which	we	focus	is	the	development	of	a	GPU-
accelerated	encoder	for	the	VP8	standard	video	format.	

2.4.3. Interfaces	

As	described	 in	Section	2.4.2.1,	 the	Virtual	Transcoding	Unit	 (vTU)	 is	a	VNF	that,	during	 its	
normal	 operation,	 receives	 an	 input	 video	 stream,	 transcodes	 it	 and	 generates	 an	 output	
video	stream	in	the	new	format.	For	each	transcoding	job,	the	vTU	also	needs	to	receive	a	
proper	 job	 description,	 in	 which	 all	 necessary	 information	 is	 provided,	 like,	 for	 instance,	
information	on	the	video	format	of	the	input	stream	and	on	the	desired	video	format	for	the	
output	 stream,	 the	 identification	 and	definition	 of	 the	 input/output	 data	 channels	 (e.g.	 IP	
addresses	and	ports,	 in	case	of	network	streams,	or	file	ID	within	a	storage	facility,	for	file-
generated	streams).	

For	 these	 reasons,	 the	 vTU	 needs,	 at	 its	 inner	 level,	 to	 communicate	 through	 three	
interfaces,	as	Figure	19	shows:	

• Input	port,	receiving	the	video	stream	to	transcode;	
• Output	port,	producing	the	transcoded	video	stream;	
• Control	port,	receiving	the	job	descriptor	and,	 implicitly,	the	command	to	start	the	

job.	

	
Figure	19.	vTU	low	level	interfaces	

Through	 the	 Control	 interface,	 the	 vTU	 receives	 the	 job	 descriptor,	 which	 contains	 all	
necessary	 information	 to	 start	 the	 requested	 transcoding	 task.	 The	 starting	 command	 is	
implicit	in	the	reception	of	the	job	description	message:	when	such	a	message	is	received	on	
the	Control	port,	the	vTU	starts	listening	at	the	Input	port	and	begins	the	transcoding	task,	
according	to	the	received	description,	as	soon	as	the	first	stream	packets	are	received.	

The	 format	 of	 the	 job	 description	 message	 is	 XML	 based.	 The	 general	 structure	 of	 the	
message	is	shown	in	Figure	20.	This	format	allows	to	define	all	necessary	parameters,	such	as	
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the	desired	input	and	output	video	formats	and	the	I/O	stream	channels	(files,	in	this	case,	
but	they	could	as	well	identify	network	channels	sending/receiving	RTP	packets).		

	
Figure	20.	XML	structure	of	the	vTU	job	description	message.	

2.4.4. Technologies	

In	the	virtualization	context,	the	problem	of	virtualizing	a	GPU	is	now	well-known,	and	can	
be	 stated	 as	 follows:	 a	 guest	 Virtual	 Machine	 (VM),	 running	 on	 a	 hardware	 platform	
provided	 with	 GPU-based	 accelerators,	 must	 be	 able	 to	 concurrently	 and	 independently	
access	the	GPU’s,	without	incurring	in	security	issues	[Walters],[Maurice].	Many	techniques	
to	achieve	GPU	virtualization	have	been	presented.	However,	all	the	proposed	methods	can	
be	divided	 in	two	main	categories,	which	are	usually	referred	to	as	API	remoting	[Walters]	
(also	known	as	split	driver	model	or	driver	paravirtualization)	and	PCI	pass-through	[Walters]	
(also	 known	 as	 direct	 device	 assignment	 [Maurice]),	 respectively.	 In	 the	 vTU,	 the	
passthrough	 approach	 has	 been	 adopted.	 For	 the	 sake	 of	 clarity,	 a	 brief	 review	 of	 this	
technology	is	shortly	given	in	the	next	paragraph.		

Pass-through	 techniques	 are	 based	 on	 the	 pass-through	mode	made	 available	 by	 the	 PCI-
Express	 channel	 [Walters],	 [Maurice].	 To	 perform	 PCI	 pass-through,	 an	 Input/Output	
Memory	Management	Unit	 (IOMMU)	 is	 used.	 The	 IOMMU	 acts	 like	 a	 traditional	Memory	
Management	Unit,	i.e.	it	maps	the	I/O	address	space	into	the	CPU	virtual	memory	space,	so	
enabling	 the	 access	 of	 the	 CPU	 to	 peripheral	 devices	 through	 Direct	 Memory	 Access	
channels.	The	IOMMU	is	a	hardware	device	which	provides,	besides	I/O	address	translations,	
also	device	isolation	functionalities,	thus	guaranteeing	secure	access	to	the	external	devices	
[Walters].	 Currently,	 two	 IOMMU	 implementations	 exist,	 one	 by	 Intel	 (VT-d)	 and	 one	 by	
AMD	 (AMD-Vi).	 To	 adopt	 the	 pass-through	 approach,	 this	 technology	 must	 also	 be	
supported	by	 the	adopted	hypervisor.	Nonetheless,	 Xenserver,	open	 source	Xen,	VMWare	

This XML file does not appear to have any style information associated with it. The document tree is
shown below.

<vTU>
<in>
<local>
<stream>test.y4m</stream>

</local>
<rstp>
<ip/>
<port/>
<stream/>
<timeout/>

</rstp>
<codec>
<vcodec/>
<acodec/>

</codec>
</in>
<out>
<local>
<overwrite>y</overwrite>
<stream>out_test.h264</stream>

</local>
<rstp>
<ip/>
<port/>
<stream/>
<timeout/>

</rstp>
<codec>
<vcodec>h264</vcodec>
<acodec/>

</codec>
</out>

</vTU>



T-NOVA	|	Deliverable	D5.31	 Network	Functions	Implementation	and	Testing	-	Interim	

©	T-NOVA	Consortium	
39	

ESXi,	 KVM	 and	 also	 the	 Linux	 containers	 can	 support	 pass-through,	 thus	 allowing	 VMs	
accessing	external	devices	such	as	accelerators	 in	a	secure	way	 [Walter].	The	performance	
that	can	be	achieved	by	the	pass-through	approach	are	usually	higher	than	the	one	offered	
by	API-remoting	[Walter],	[Maurice].	Also,	the	pass-through	method	gives	immediate	access	
to	 the	 latest	 GPU	 drivers	 and	 development	 tools	 [Walter].	 A	 comparison	 between	 the	
performance	achievable	using	different	hypervisors	(including	also	Linux	Containers)	is	given	
in	 [Walter],	where	 it	 is	shown	that	pass-through	virtualization	of	GPU’s	can	be	achieved	at	
low	overhead,	with	the	performance	of	KVM	and	of	Linux	containers	very	closed	to	the	one	
achievable	without	 virtualization.	 One	major	 drawback	 of	 pass-through	 is	 that	 it	 can	 only	
assign	the	entire	physical	GPU	accelerator	to	one	single	VM.	Thus,	the	only	way	to	share	the	
GPU	 is	 to	 assign	 it	 to	 the	 different	 VMs	 one	 after	 the	 other,	 in	 a	 sort	 of	 “time	 sharing”	
approach	 [Walters].	 This	 limitation	 can	 be	 overcome	by	 a	 technique	 also	 known	 as	Direct	
Device	 Assignment	 with	 SR-IOV	 (Single	 Root	 I/O	 Virtualization)	 [Walters].	 A	 single	 SR-IOV	
capable	device	can	expose	itself	as	multiple,	independent	devices,	thus	allowing	concurrent	
hardware	 multiplexing	 of	 the	 physical	 resources.	 This	 way,	 the	 hypervisor	 can	 assign	 an	
isolated	 portion	 of	 the	 physical	 device	 to	 a	 VM;	 thus,	 the	 physical	 GPU	 resources	 can	 be	
concurrently	 shared	 among	 different	 tenants.	 However,	 to	 the	 best	 of	 the	 author’s	
knowledge,	 the	 only	 GPU	 enabled	 to	 this	 functionality	 belongs	 to	 the	 recently	 launched	
NVIDIA	 Grid	 family	 [Maurice],	 [Walters];	 also,	 the	 only	 hypervisors	 which	 can	 currently	
support	 this	 type	of	hardware	 virtualization	are	VMWare	Sphere	and	Citrix	XenServer	6.2.	
However,	since	also	KVM	can	now	support	SR-IOV,	there	 is	a	path	towards	the	use	of	GPU	
hardware	virtualization	also	with	this	hypervisor	[Walters].	

2.4.5. Dimensioning	and	Performance	

In	 order	 to	 obtain	 a	 realistic	 assessment	 of	 the	 performance	 of	 the	 vTU,	 as	 if	 it	 was	
embedded	 as	 a	 VNF	 in	 the	 T-NOVA	 framework,	 it	 is	 necessary	 to	 perform	 the	 tests	 on	 a	
virtualized	platform	resembling	as	much	as	possible	the	T-NOVA	infrastructure.	

The	performance	results	presented	in	the	table	of	Section	2.4.2.1.	were	obtained	by	the	vTU	
running	natively	on	physical	 computation	 resources.	 For	 a	VNF	 like	 the	vTU,	however,	 the	
actual	 performance	 achievable	 in	 the	 T-NOVA	 environment	 could	 be	 quite	 different	 from	
those	 obtained	 running	 on	 the	 physical	 infrastructure.	 This	 is	mainly	 due	 to	 the	 following	
reasons:	

• CPU	 virtualization	 overheads	 (vCPU’s	 switching	 over	 physical	 CPU’s,	 at	 the	
hypervisor	level);	

• GPU	virtualization	 strategies	 (e.g.	multiple	 vGPU’s	 associated	 to	 the	 same	physical	
GPU);	

• vCPU-vGPU	 communication	 overheads	 (switching	 overheads	 in	 managing	 time-
sharing	policies	on	the	PCI-Express	bus).	

These	 reasons	 let	 one	 expect	 a	 possible	 performance	 loss,	 when	 running	 on	 a	 virtualized	
environment,	especially	in	case	of	vTU	running	tasks	which	exploit	the	GPU	resources.	

For	 this	 reason,	 in	 order	 to	 obtain	 a	 realistic	 evaluation	 of	 the	 encoding/decoding	
computation	speeds	in	the	actual	T-NOVA	environment,	the	performance	tests	presented	in	
Section	 2.4.2.1.	 have	 been	 carried	 out	 on	 a	 virtualized	 environment.	 In	 order	 to	 get	 a	
significant	comparison,	the	VM	running	the	vTU	has	been	equipped	with	the	same	amount	
of	 CPU	 and	 GPU	 cores	 as	 in	 the	 native	 tests.	 The	 following	 table	 presents	 the	 obtained	
results,	 in	 terms	 of	 computation	 speed	 (frames/sec),	 compared	 to	 the	 speed	 obtained	 on	
physical	resources,	for	the	same	task.	
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As	the	table	shows,	the	obtained	results	show	that,	for	almost	all	the	considered	tasks,	there	
is	 no	 significant	 performance	 loss	 with	 respect	 to	 the	 same	 task	 running	 on	 physical	
resources,	even	in	the	tasks	running	mainly	on	GPU		(like	H264	encoding	using	NVENC).	This	
encouraging	 result	 is	 mainly	 due	 to	 the	 high	 efficiency	 of	 the	 adopted	 GPU	 virtualization	
strategy	 –	GPU	 pass-through	 –	 which	 assigns	 a	 virtual	 GPU	 exclusively	 to	 a	 physical	 GPU,	
thus	 allowing	 to	 bypass	 any	 overhead	 in	 the	 GPU-CPU	 communication.	 The	 cost	 for	 this	
efficiency,	 however,	 is	 paid	 in	 terms	of	 difficulty	 to	 share	 a	 physical	GPU	 resource	 among	
multiple	VMs.	

2.4.6. Future	Work	

Two	main	steps	are	foreseen	for	the	vTU.	A	first	activity	will	focus	on	scaling	mechanism	for	
this	VNF.	Also,	the	vTU	will	be	combined	with	other	VNFs	developed	within	T-Nova	in	order	
to	create	new	service	with	a	wider	scope.	
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2.5. Traffic	Classifier	

2.5.1. Introduction	

The	Traffic	Classifier	(TC)	VNF	used	comprises	of	two	Virtual	Network	Function	Components	
(VNFCs),	 namely	 the	 Traffic	 Inspection	 engine	 and	 Classification	 and	 Forwarding	 function.	
The	 two	 VNFCs	 are	 implemented	 in	 respective	 VMs.	 The	 proposed	 Traffic	 Classification	
solution	is	based	upon	a	Deep	Packet	Inspection	(DPI)	approach,	which	is	used	to	analyze	a	
small	number	of	initial	packets	from	a	flow	in	order	to	identify	the	flow	type.	After	the	flow	
identification	step	no	further	packets	are	inspected.	The	Traffic	Classifier	follows	the	Packet	
Based	per	Flow	State	(PBFS)	in	order	to	track	the	respective	flows.	This	method	uses	a	table	
to	 track	 each	 session	 based	 on	 the	 5-tuples	 (source	 address,	 destination	 address,	 source	
port,	destination	port,	and	the	transport	protocol)	that	is	maintained	for	each	flow.		

2.5.2. Architecture	

Both	VNFCs	can	run	independently	from	one	another,	but	in	order	for	the	VNF	to	have	the	
expected	behaviour	and	outcome,	the	2	VNFCs	are	required	to	operate	in	a	parallel	manner.		

 

Figure	21.	Virtual	Traffic	Classifier	VNF	internal	VNFC	topology	

Furthermore,	in	order	to	achieve	the	parallel	processing	of	the	2	VNFCs	it	is	required	for	the	
traffic	 to	be	mirrored	 towards	 the	2	VNFCs,	 so	 the	2	VNFCs	 receive	 identical	 traffic.	The	2	
VNFCs	 are	 inter-connected	 internally	 with	 an	 internal	 virtual	 link,	 which	 transfers	 the	
information	 extracted	 by	 the	 Traffic	 Inspection	 VNFC,	 and	 transmits	 it	 to	 the	 Traffic	
Forwarding	VNFC	in	order	to	apply	the	pre-defined	rules.		

2.5.3. Functional	Description	

The	 Traffic	 Inspection	 VNFC	 is	 the	 most	 processing	 intense	 component	 of	 the	 VNF.	 It	
implements	the	filtering	and	packet	matching	algorithms	in	order	to	support	the	enhanced	
traffic	 forwarding	 capability	 of	 the	 VNF.	 The	 component	 supports	 a	 flow	 table	 (exploiting	
hashing	 algorithms	 for	 fast	 indexing	 of	 flows)	 and	 an	 inspection	 engine	 for	 traffic	
classification.		

The	Traffic	Forwarding	VNFC	component	is	responsible	for	routing	and	packet	forwarding.	It	
accepts	 incoming	network	 traffic,	 consults	 the	Flow	Table	 for	 classification	 information	 for	
each	 incoming	 flow	 and	 then	 applies	 pre-defined	 policies	 (i.e.	 TOS/DSCP	 (Type	 of	
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Service/Differentiated	 Services	 Code	 Point)	 marking	 for	 prioritizing	 multimedia	 traffic)	 on	
the	forwarded	traffic.	It	is	assumed	that	the	traffic	is	forwarded	using	the	default	policy	until	
it	is	identified	and	new	policies	are	enforced.	The	expected	response	delay	is	considered	to	
be	negligible,	as	only	a	small	number	of	packets	are	required	to	achieve	the	identification.	In	
a	scenario	where	the	VNFCs	are	not	deployed	on	the	same	compute	node,	traffic	mirroring	
may	introduce	additional	overhead.	

2.5.4. Interfaces	

The	virtual	 Traffic	 classifier	VNF	 is	based	upon	 the	T-NOVA	network	architecture	but	 from	
the	advised	set	of	network	interfaces	(management,	datapath,	monitoring	and	storage)	uses	
the	 management,	 datapath	 and	 the	 monitoring.	 The	 storage	 interface	 is	 not	 particularly	
essential	to	the	vTC,	as	all	the	computational	and	packet	processing	utilize	mostly	CPU	and	
memory	 resources.	 The	 VNF	 requires	 intensive	 CPU	 tasks	 and	 a	 large	 number	 in	memory	
I/Os	for	the	traffic	analysis,	manipulation	and	forwarding.	The	storage	 interface	would	add	
an	 unnecessary	 overhead	 to	 the	 already	 intensive	 process,	 and	 it	 was	 decided	 to	 be	
excluded	in	favour	of	an	optimal	performance.		

2.5.5. Technologies	

The	 vTC	utilizes	 various	 technologies	 in	order	 to	offer	 a	 stable	 and	high	performance	VNF	
compliant	 to	 the	high	standards	of	 legacy	physical	network	 functions.	The	 implementation	
for	 the	 traffic	 inspection	 used	 for	 these	 experiments	 is	 based	 upon	 the	 open	 source	 nDPI	
library	 [REFnDPI].	 The	 packet	 capturing	 mechanism	 is	 implemented	 using	 various	
technologies	in	order	to	investigate	the	trade-off	between	performance	and	modularity.	The	
various	packet	handling/forwarding	technologies	are:	

• PF_RING:	PF_RING	is	a	set	of	library	drivers	and	kernel	modules,	which	enable	high-
throughput,	 packet	 capture	 and	 sampling.	 For	 the	 needs	 of	 the	 vTC	 the	 PF_RING	
kernel	module	library	is	used,	which	is	polling	the	packets	through	the	LINUX	NAPI.	
The	 packets	 are	 copied	 from	 the	 kernel	 to	 the	 PF_RING	 buffer	 and	 then	 they	 are	
analyzed	using	the	nDPI	library.	

• Docker:	 Docker	 is	 a	 platform	 using	 container	 virtualization	 technology	 to	 run	
applications.	 In	order	to	investigate	the	pros	and	cons	of	the	container	technology,	
the	vTC	 is	developed	also	as	an	 independent	container	application.	The	forwarding	
and	 the	 inspecting	of	 the	 traffic	 are	 also	using	PF_RING	and	nDPI	 as	 technologies,	
but	they	are	modified	to	fit	and	function	in	a	container	environment.	

• DPDK:	DPDK	comprises	of	a	set	of	libraries	that	support	efficient	implementations	of	
network	 functions	 through	 access	 to	 the	 system’s	 network	 interface	 card	 (NIC).	
DPDK	offers	to	network	function	developers	a	set	of	tools	to	build	high	speed	data	
plane	applications.	DPDK	operates	in	polling	mode	for	packet	processing,	instead	of	
the	 default	 interrupt	 mode.	 The	 polling	 mode	 operation	 adopts	 the	 busy-wait	
technique,	 continuously	 checking	 for	 state	 changes	 in	 the	 network	 interface	 and	
libraries	 for	packet	manipulation	across	different	cores.	A	novel	DPDK-enabled	vTC	
has	been	implemented	in	this	test	case	in	order	to	optimize	the	packet-handling	and	
processing	 for	 the	 inspected	and	 forwarded	 traffic,	 by	bypassing	 the	 kernel	 space.	
The	analyzing	and	forwarding	functions	are	performed	entirely	on	user-space	which	
enhances	the	vTC	performance.	

The	various	technologies	used	generate	a	great	variety	of	test	case	scenarios	and	exhibit	
a	rich	VNF	test	case.	The	PF_RING	and	Docker	cases	have	the	capability	of	keeping	the	
NIC	 driver,	 and	 so	 the	 VNFC	 maintains	 connectivity	 with	 the	 OpenStack	 network	
connected.	On	the	contrary,	in	the	case	of	DPDK	the	NIC	is	unloaded	of	the	Linux-kernel	
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driver	 and	 loaded	 the	 DPDK	 one.	 However,	 the	 DPDK	 driver	 causes	 the	 VNFC	 to	 lose	
network	 connectivity	with	 the	network	attached,	 the	 compensation	 is	 the	 significantly	
higher	performance	as	shown	in	the	next	section.	

2.5.6. Dimensioning	and	Performance	

Results	include	comparison	of	the	traffic	inspection	and	forwarding	performance	of	the	vTC	
using	PF_RING,	Docker	and	DPDK.	

 

 

Figure	22.	vTC	Performance	comparison	between	DPDK,	PF_RING	and	Docker	

As	 it	 can	be	 seen	 from	 the	 evaluation	 results	 among	 the	 various	 approaches	used	 for	 the	
vTC,	the	DPDK	approach	performs	significantly	better	from	the	other	2	options.	Especially	in	
the	 case	 it	 is	 combined	 with	 SR-IOV	 connectivity	 it	 can	 achieve	 nearly	 8Gbps/s	 of	
throughput.	However,	the	DPDK	version	as	already	mentioned	has	an	impact	on	connectivity	
with	 the	 OpenStack	 network,	 as	 the	 kernel	 stack	 is	 removed	 from	 the	 NIC.	 Although	 the	
PF_RING	and	Docker	versions	maintain	connectivity	with	the	network,	their	performance	is	
clearly	degraded	compared	to	DPDK’s.	

The	Dimensioning	of	 the	vTC	due	 to	 its	 architecture	 is	based	on	 the	 infrastructure	aspect.	
The	 vTC	 performance	 is	 dependent	 on	 whether	 there	 is	 SR-IOV	 available	 on	 the	 running	
infrastructure.	

2.5.7. Deployment	Details	

The	vTC	was	developed	in	order	to	be	deployed	and	run	in	an	OpenStack	environment,	the	
OS	 of	 the	 virtualized	 environment	was	Ubuntu	 14.04	 LTS.	 The	 selection	 of	 the	OS	 version	
assures	 the	maintenance	and	continuous	development	of	 the	VNF.	 In	order	 to	conform	to	
the	T-NOVA	framework	a	Rundeck	job-oriented	service	functionality	was	implemented.	

The	vTC	lifecycle	is	performed	via	the	Rundeck	framework	in	order	to	facilitate	the	seamless	
functionality	of	the	VNF.	In	Rundeck,	we	have	created	different	Jobs	to	describe	the	different	
lifecycle	events.	Each	event	has	a	description	and	is	part	of	a	Workflow.		

An	example	workflow:		
If a step fails: Stop at the failed step. 
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Strategy: Step-oriented 
We add a step of type “Command”. The command differs according to the 
operation we want to implement. The operations we implemented are 
described below: 
* 1. VM Configuration – Command: “~/rundeck_jobs/build.sh” 
* 2. Start Service – Command: “~/rundeck_jobs/start.sh” 
* 3. Stop Service – Command: “~/rundeck_jobs/stop.sh” 
 
In	terms	of	the	data	traffic	required	to	test	the	vTC,	several	changes	and	modifications	had	
to	 be	 made	 in	 order	 to	 fit	 the	 desired	 traffic	 mirroring	 scenario	 it	 was	 tested.	 Detailed	
information	about	this	subject	is	further	discussed	in	the	section	below.	

2.5.7.1.	 Traffic	Mirroring	–	Normal	Networking	

In	order	 to	 support	direct	 traffic	 forwarding,	meaning	 the	virtual	network	 interface	of	one	
Virtual	 Network	 Function	 Component	 (VNFC)	 be	 directly	 connected	 to	 another	 VNFC’s	
virtual	network	interface,	a	modification	on	Neutron’s	OVS	needs	to	be	applied.	Each	virtual	
network	 interface	 of	 a	 VNFC	 is	 reflected	 upon	 one	 TAP-virtual	 network	 kernel	 device,	 a	
virtual	port	on	Neutron’s	OVS,	and	a	virtual	bridge	connecting	them.	This	way,	packets	travel	
from	the	VNFC	to	Neutron’s	OVS	through	the	Linux	kernel.	The	virtual	kernel	bridges	of	the	
two	VNFCs	need	to	be	shut	down	and	removed,	and	then	an	OVSDB	rule	needs	to	be	applied	
at	 the	 Neutron	 OVS,	 applying	 an	 all-forwarding	 policy	 between	 the	 OVS	 ports	 of	 the	
corresponding	VNFCs.	The	OpenStack	network	detailed	topology	is	shown	in	Fig.	15.	

 

 

Figure	23.	Example	overview	of	the	vTC	OpenStack	network	topology.	

First	Option	unbind	interfaces	from	the	Openstack	networking	and	connect	them	directly	via	
OVS		

 * Remove from br-ex, the qvo virtual interfaces 
 * Remove from the qbr linux bridge, the qvb and the tap virtual 
interfaces 
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 * Add the tap-interfaces on the OVS directly and add a flow 
forwarding the traffic to them. 

This	option	has	been	tested	and	as	shown	in	the	results	section	for	the	cases	of	normal	
network	setup.		

2.5.7.2.	 Traffic	Mirroring	–	SR-IOV	

Single	Root	 I/O	virtualization	(SR-IOV)	 in	networking	 is	a	very	useful	and	strong	feature	for	
virtualized	 network	 deployments.	 SRIOV	 is	 a	 specification	 that	 allows	 a	 PCI	 device,	 for	
example	 a	 NIC	 or	 a	 Graphic	 Card,	 to	 share	 access	 to	 its	 resources	 among	 various	 PCI	
hardware	functions:	

Physical	Function	(PF)	(meaning	the	real	physical	device),	from	it	a	number	of	one	or	more	
Virtual	Functions	(VF)	are	generated.	Supposedly	we	have	one	NIC	and	we	want	to	share	its	
resources	among	various	Virtual	Machines,	or	in	terms	of	NFV	various	VNFCs	of	a	VNF.	We	
can	split	 the	PF	 into	numerous	VFs	and	distribute	each	one	to	a	different	VM.	The	routing	
and	forwarding	of	the	packets	is	done	through	L2	routing	where	the	packets	are	forwarded	
to	the	matching	MAC	VF.	In	order	to	perform	our	mirroring	and	send	all	traffic	both	ways	we	
need	to	change	the	MAC	address	both	on	the	VM	and	on	the	VF	and	disable	the	spoof	check.	

	

2.5.8. Future	Steps	

Future	steps	include	the	implementation	of	automated	way	to	apply	the	direct	connection	
of	the	VNFCs.	This	step	will	be	included	in	a	HEAT	deployment		

• Benchmarking	all	options	and	comparing	them.		

Other	options	to	be	tested,	is	to	add	a	TCP/IP	stack	on	the	DPDK	and	maintain	the	
connectivity	of	the	VNFCs.	These	alternatives	include:	

• A	kernel	with	tcp/ip	stack	on	the	userspace	DPDK	rump	kernel	–
https://github.com/rumpkernel/drv-netif-dpdk	

• DPDK	FreeBSD	TCP/IP	Stack	porting	https://github.com/opendp/dpdk-odp	

2.6. Virtual	Home	Gateway	(VIO)	

2.6.1. 	Introduction	

Another	 VNF	 that	 T-NOVA	 aims	 to	 produce	 is	 currently	 known	 in	 the	 research	 and	 the	
industry	 world	 under	 various	 names,	 notably	 Virtual	 Home	 Gateway	 (VGH),	 Virtual	
Residential	Gateway,	Virtual	Set-Top	Box	or	Virtual	Customer	Premise	Equipment.	

We	will	see	how	the	initial	need	has	been	expanded	to	cover	some	aspects	of	the	Content	
Delivery	Network	virtualization	as	well.	

The	 following	 sections	 aim	 to	 provide	 a	 brief	 description	 of	 the	 proposed	 virtual	 function	
along	 with	 the	 requirements,	 the	 architecture	 design,	 functional	 description,	 and	
technology.	

In	 T-NOVA,	 we	 will	 focus	 on	 the	 bottleneck	 points	 usually	 found	 in	 resource	 constrained	
physical	gateway	like	media	delivery,	streaming	and	caching,	media	adaptation	and	context-
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awareness.	In	fact,	some	previous	research	proposals	like	[Nafaa2008]	or	[Chellouche2012] 
include	 the	 Home	 Gateways	 to	 assist	 the	 content	 distribution.	 By	 using	 a	 Peer-to-Peer	
approach,	 the	 idea	 is	 to	 offload	 the	 main	 networks	 and	 provide	 an	 “Assisted	 Content	
Delivery”	by	using	a	mix	of	Server	Delivery	and	Peer	delivery.	

When	virtualizing	the	Home	Gateway,	this	approach	can	lead	in	some	extent	to	the	creation	
of	a	Virtual	CDN	or	vCDN	as	a	VNF.	

Particular	 attention	 will	 be	 given	 to	 real	 world	 deployment	 issues,	 like	 coexistence	 with	
legacy	hardware	and	infrastructure,	compatibility	with	existing	user	premise	equipment	and	
security	aspects.	

2.6.2. Architecture	

2.6.2.1.	 High	level	

Next,	we	present	how	the	box	and	the	server	will	connect	to	perform	network	operations.	
Figure	24	shows	the	high	level	architecture	as	presented	by	ETSI	in	[Netty]	 netty.io	

[NFV001].		

	
Figure	24	ETSI	home	virtualization	functionality	

We	aim	at	 supporting	 a	 subset	of	 the	 vHG	NF	as	well	 as	 some	vCDN	content	 caching	 and	
orchestration	related	NF.	

2.6.2.2.	 Low	Level	

The	vHG+vCDN	vNF	are	composed	from:	

• vHG:	 1	 VM	 per	 user	 that	 acts	 as	 a	 transparent	 proxy	 that	 can	 redirect	 user	
requests	to	caches	deployed	in	NFVI-POP;	

• vCDN/Streamer	 VNF:	 an	 arbitrary	 amount	 of	 VMs	 (at	 least	 3)	 that	 stores	 and	
delivery	content	to	the	end	user;	

• vCDN/Transcoding	 vNF:	 an	 arbitrary	 amount	 of	 VMs	 that	 ingest	 content	 from	
the	content	provider	and	provision	a	transcoded	version	to	a	Streamer	vNF;	

• vCDN/Caching	 and	 Transcoding	 orchestrator	 vNF:	 a	 VM	 that	 deploys	 redirect	
rules	to	the	vHGs	and	triggers	transcoding	jobs.		

Home Network Public Network

Decoder

Browser
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To	 illustrate	 low	 level	 aspects	 of	 the	 VNFs	 that	 will	 be	 deployed,	 we	 will	 take	 a	 specific	
example	 of	 VNF	 which	 caches,	 transcodes	 and	 streams	 the	 most	 requested	 videos	 by	
gateway	users.	

	

	
Figure	25		Low	level	architecture	diagram	for	transcode/stream	VNF	

Figure	25	 illustrates	a	modular	gateway	which	acts	as	a	HTTP	proxy,	notifying	 the	 content	
fronted	 when	 a	 video	 is	 consumed	 by	 the	 end	 user.	 Having	 this	 information	 allows	 the	
content	frontend	to	trigger	the	download	from	the	content	provider’s	network	to	the	VNF.	
Once	the	video	is	entered	on	the	VNF,	it’s	transcoded	and	moved	to	the	storage	shared	by	
the	streamers.	

Once	 the	 video	 resource	 is	 available	 to	 the	 end	 user,	 the	 gateway	 redirects	 the	 user’s	
request	to	the	streamer,	ensuring	the	best	QoE	possible.	

2.6.3. Sequence	diagrams	

The	sequence	diagram	presented	 in	Figure	26	 is	associated	with	 the	example	presented	 in	
section	2.6.2.2.		
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Figure	26	Sequence	diagram	for	the	transcode/stream	VNF	example.	

2.6.4. Technology	

2.6.4.1.	 Netty:	a	Java	Non-Blocking	Network	Framework	

Netty	 is	 an	 asynchronous	 event-driven	 network	 application	 framework	 [Netty]	 for	 rapid	
development	of	maintainable	high	performance	protocol	servers	and	clients.	

One	of	the	most	striking	features	of	Netty	 is	 that	 it	can	access	resources	 in	a	non-blocking	
approach,	meaning	that	some	data	is	available	as	soon	as	it	gets	in	the	program.	This	avoids	
wasting	 system	 resources	 while	 waiting	 for	 the	 content	 to	 become	 available;	 instead	 a	
callback	is	triggered	whenever	data	is	available.	This	also	saves	system	resources	by	having	
only	1	thread	for	resource	monitoring.	

Netty	 is	 one	 of	 the	 building	 blocks	 to	 be	 used	 to	 implement	 the	 OSGi	 bundle	 Proxy	
composing	the	vHG.			

2.6.4.2.	 Restful	architecture	

End	user	applications,	Gateways	and	Front-end	need	to	interact	though	secured	connection	
on	the	internet.	

A	Java	Restful	architecture	can	be	implemented	for	those	reasons:	

• Architecture	 is	stateless,	which	means	that	 the	servers	 that	expose	their	 resources	
do	not	need	to	store	any	session	for	the	client.	This	greatly	eases	scaling	up,	since	no	
real	time	session	replication	needs	to	be	performed,	therefore	a	new	server	will	be	
deployed	for	load	balancing	purposes.	

• Architecture	is	standard	and	well	supported	by	the	industry,	allowing	us	to	leverage	
tools	for	service	discovery	and	reconfiguration.	

• Authentication	methods	are	well	documented	and	widespread	among	web	browsers	
and	servers.		

Regarding	the	technical	details,	we	will	consider	the	standards	of	the	Java	SDK,	by	using	JAX-
RS	 and	its	reference	implementation,	Jersey.		This	framework	can	be	integrated	on	any	
servlet	container,	JEE	container	or	lightweight	NIO	HTTP	server	like	Grizzly	which	is	used	on	
the	vHG.	
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2.6.4.3.	 Transcoding	workers	

One	 of	 the	 key	 features	 of	 cloud	 computing	 is	 its	 ability	 to	 produce	 on-demand	 compute	
power	 at	 a	 small	 cost.	 To	 take	 advantage	of	 this	 feature,	we	plan	 to	 implement	 the	most	
computing	intensive	tasks	as	a	network	of	workers	using	a	Python	framework	called	Celery.	
Celery	is	an	asynchronous	task	queue/job	queue	based	on	distributed	message	passing.	

Every	Celery	worker	is	a	stand-alone	application	being	able	to	perform	one	or	more	tasks	in	
a	 parallelized	 manner.	 To	 achieve	 this	 goal,	 a	 general	 transcoding	 workflow	 has	 been	
designed	to	be	applied	on	a	remote	video	file.		

Having	a	network	of	workers	allows	us	to	scale-up	or	scale-down	the	overall	compute	power	
simply	by	 turning	a	virtual	machine	up	or	down.	Once	the	worker	 is	up,	 it	connects	 to	 the	
message	 broker,	 and	 picks	 up	 the	 first	 task	 available	 on	 the	 queue.	 Frequent	 feedback	
messages	 are	 pushed	 to	 the	 message	 broker,	 allowing	 us	 to	 present	 the	 results	 on	 the	
gateway	as	soon	as	they	are	available	on	the	storage.		

If	 the	 compute	 capacity	 is	 above	 the	 required	 level,	 active	 workers	 are	 decommissioned,	
leaving	the	pool	as	their	host	virtual	machine	turns	off.	

Note	 that	 workers	 only	 carry	 out	 software	 transcoding,	 leaving	 room	 for	 optimization	
through	 the	 use	 of	 hardware.	 The	 virtual	 Trancoding	 Unit	 (vTU)	 is	 an	 excellent	 drop-in	
replacement	 for	 the	 transcoding	 vNF.	 However,	 as	 hardware	 transcoding	 may	 not	 be	
available	everywhere,	we	keep	the	slow	software	transcoding	as	a	fall-back	option.	

2.6.4.4.	 Scalable	Storage	

We	need	to	have	caches	able	to	store	the	massive	amount	of	data	needed	by	a	CDN.	These	
caches	can	be	spread	among	several	datacentres	and	must	be	tolerant	to	failure.	They	also	
need	to	scale,	and	must	support	adding	or	removing	storage	node	as	defined	by	the	scaling	
policy.	

To	implement	that,	we	decided	to	deploy	[Swiftstack]	which	proposes	to	create	a	cluster	of	
storage	node	 to	 support	 Scalable	Object	 storage	with	High	availability,	 Partition	Tolerance	
and	eventual	consistency.	

Storage	Nodes	are	accessed	by	external	users	using	a	Swift	Proxy	that	handles	the	read	and	
write	operations.	Swift	has	abstractions	where	nodes	are	stored	inside	zones	and	regions	in	
Figure	25.	We	detail	the	mapping	between	swift	abstraction	and	T-NOVA	in	Table	2-B		

Swift	 T-NOVA	 Meaning	

Region	 NFVI-POP	 Parts	of	the	cluster	that	are	
physically	separated	

Zone	 Compute	Node	 Zones	to	be	configured	to	
isolate	failure	

Node	 VNFC	 Server	that	run	one	or	more	
swift	process	

Table	2-B	Mapping	between	Swift	and	T-NOVA	abstraction	
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Figure	27	swift	stack	Region/Zone/Node.	

We	use	swift	abstraction	to	provide	a	reliable	storage	solution.	For	example,	our	vCDN	spans	
over	multiple	datacentres	to	provide	good	connectivity.	Each	pop	is	associated	to	a	region.	
With	 the	 same	 approach,	 we	 can	 have	 several	 compute	 nodes	 hosting	 our	 VNFC.	 For	
reliability	reasons,	we	don’t	want	all	our	nodes	hosted	on	the	same	compute	node,	so	that	if	
the	compute	node	goes	down,	part	of	 the	service	will	be	still	available.	Finally,	each	VNFC	
hosts	a	swift	Node.	

Even	 if	 swift	 is	 an	object	 storage,	 it	 allows	users	 to	 access	 and	push	data	over	 a	 standard	
HTTP	API.	It	means	that	the	streamer	vNF	feature	can	be	implemented	using	swift	as	well.	

2.6.4.5.	 Using	Docker	to	provide	safe,	reliable	and	powerful	application	deployment	

We	decided	to	use	[Docker]	 to	support	 the	 implementation.	Docker	 is	an	OS	Virtualization	
technology	that	runs	segregated	applications	and	libraries	on	a	common	Linux	kernel.	

Docker	can	be	run	on	major	Linux	Distribution	like	Debian	or	Fedora,	but	it	can	also	run	on	
smaller,	 custom	distribution	 that	provide	an	execution	environment	 for	 container.	CoreOS	
produces,	maintains	and	utilizes	open	source	software	for	Linux	containers	and	distributed	
systems.	Projects	are	designed	to	be	composable	and	complementing	each	other	in	order	to	
run	container-ready	infrastructure.2	

The	applications	we	build	are	based	on	vendor	technologies	 (for	example,	 the	Java	Docker	
image	maintained	 by	 Oracle)	 that	 are	 kept	 updated	 on	 a	 regular	 basis.	We	 implemented	
continuous	deployment,	meaning	that	whenever	an	upstream	dependency	gets	updated,	we	
re-package	our	software	with	the	new	image	and	run	test	to	discover	potential	regression.	

Our	 approach	 is	 safer.	 The	 traditional	 installation	 of	 a	 package	 on	 an	 OS	 since	 every	
container	is	walled	from	the	other	ones	and	the	OS	has	the	only	responsibility	of	maintaining	
the	 container	 execution	 environment.	 Vendors	 usually	 provide	 a	 shorter	 delay	 to	 update	
their	docker	images	that	the	Linux	Distribution.		

																																																													
2	https://coreos.com/docs/	
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Our	approach	is	reliable	in	the	sense	that	if	a	T-NOVA	virtual	machine	goes	down	(except	the	
VNF	 Controller	 which	 is	 not	 highly	 available	 for	 the	 moment)	 we	 are	 able	 to	 redeploy	
containers	on	the	cluster	on	another	available	machine.	

We	also	don’t	have	to	upload	a	new	vnfd	+	vnf	images	every	time	we	have	a	security	update.	
All	we	need	to	do	is	to	push	the	new	release	on	our	docker	registry	and	the	new	image	will	
be	picked	up	automatically	when	configuring	the	VMs.			

2.6.4.6.	 Orchestration	and	scaling	

In	 order	 to	 ease	 the	 deployment	 of	 our	 vNFs,	 we	 use	 a	 configuration	 management	 tool	
named	Salt	Stack	[Salt].	The	necessity	to	use	such	a	tool	is	developed	in	the	next	paragraphs;	
we	 then	 explain	 why	 we	 choose	 salt	 and	 finally	 conclude	 with	 an	 overview	 of	 the	
mechanisms	we	implemented.	

	
Figure	28	vCDN	implementation	for	Software	configuration	Management.	

(a) Why	configuration	management	tool?	

As	mentioned	 in	2.1.1,	only	one	VNFC	 is	able	to	receive	configuration	commands	from	the	
Orchestration	to	support	the	whole	VNF	life	cycle.	This	means	that	the	information	received	
on	the	configuration	interface	must	be	propagated	to	the	other	VNFCs.	

When	 the	VNF	 starts,	 some	configuration	need	 to	be	 carried	out	 to	 initialize	 the	 software	
components.	 For	 example,	 the	 storage	 nodes	 must	 be	 initialized	 with	 the	 DHT	 from	 the	
proxy,	 some	 block	 storage	 must	 be	 allocated	 to	 the	 node	 and	 so	 one.	 This	 non	 trivial	
configuration	tasks	must	be	carried	out	after	the	VM	has	booted,	but	also	when	scaling	out	
or	in.	These	tasks	may	fail,	but	the	consistency	of	the	whole	system	should	be	kept	intact.	

For	those	reasons,	we	decided	to	use	an	orchestration	tool	that	create	an	abstraction	level	
over	 the	 system	 to	 manage	 the	 software	 deployment,	 system	 configuration,	 middleware	
installation	and	service	configuration	with	ease.	
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(b) Why	Salt?	

SaltStack	 platform	 or	 Salt	 is	 a	 Python-based	 open	 source	 configuration	 management	
software	and	remote	execution	engine.	Supporting	the	"infrastructure-as-code"	approach	to	
deployment	and	cloud	management,	it	competes	primarily	with	Puppet,	Chef,	and	Ansible.3	

Salt	Stack	was	preferred	over	other	alternatives	due	 to	 its	 scalability,	ease	of	deployment,	
good	 support	 for	Docker	 and	python	 source	 code.	We	don’t	 claim	 that	what	we	designed	
would	not	have	been	possible	with	other	alternative,	but	Salt	was	the	solution	we	felt	 the	
more	comfortable	with	at	the	end.	

(c) Implementation	of	our	configuration	management	

We	implemented	the	configuration	management	in	a	two-phase.	It	is	illustrated	in	Figure	28.	

First	 during	 the	 bootstrap	 phase,	 each	 virtual	machine	 is	 injected	with	 cloud-init	with	 the	
following	data	and	programs.	

• IPaddress	of	the	salt	master	
• Certificates	to	assure	a	secure	connection	with	the	salt	master	
• Its	role	in	the	system.	
• Salt-master	or	salt-minion	service	installed	and	launched.	
• The	“recipes”	or	desired	infrastructure	code	deployed	on	the	salt	master.	

Once	the	bootstrapping	phase	is	over,	we	have	a	system	comprised	of	VMs	securely	
connected	on	the	data	network	ready	to	take	order	from	the	master.	Note	that	the	OS	could	
be	pre-bundled	with	software	in	order	to	fasten	the	next	phase,	but	this	is	not	mandatory.	

The	second	phase	is	launched	when	the	start	lifecycle	event	from	TeNOR	is	received	through	
the	middleware	API.	This	processes	the	infrastructure	code	and	verifies	the	compliance	of	
each	minion	with	the	desired	infrastructure.		

As	we	can	see	in	Code	listing	1,	the	yaml	DSL	used	with	Salt	describes	how	the	infrastructure	
should	be	 configured.	 Salt	 allows	us	 to	 “synchronise”	 the	 code	 infrastructure	 in	 yaml	with	
the	 real	 infrastructure	 simply	 by	 calling	 the	 Salt	 API.	 This	 synchronization	 process	 installs,	
copies,	 configures,	 downloads	 the	 required	 missing	 software	 components	 and	 can	 even	
configure	more	low	level	aspects.	

Providing	 the	 possibility	 for	 the	 system	 the	 scale-in	 is	 straightforward	 when	 having	 the	
infrastructure	 described	 as	 code.	 Installing,	 configuring	 and	 ramping	 up	 new	 VM	 is	 just	 a	
matter	of	“synching”	the	infrastructure	state	with	the	new	resources	available.	

Our	implementation	use	the	Ubuntu	OS	for	undockerized	software	(the	storage)	and	CoreOS	
distribution	to	host	application	that	are	already	dockerized	(the	rest	of	the	software).	

																																																													
3	https://en.wikipedia.org/wiki/Salt_%28software%29	
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2.6.5. Dimensioning	and	Performances	

The	results	reported	here	are	not	derived	from	the	results	from	the	Pilot	testbed,	which	 is	
not	available	 to	VNF	developer	 for	performances	purposes	so	 far.	We	plan	 to	perform	the	
same	 tests	on	 the	 real	pilot	 and	update	our	 results	 in	 the	next	deliverable.	We	 thought	 it	
would	 be	 valuable	 to	 have	 a	 first	 vision	 on	 some	 results	 through	 our	 related	 work	
[Herbaut2015].	

We	 described	 the	 role	 of	 the	 vHG+vCDN	 deployed	 on	 the	 server-side	 infrastructure	
composed	 of	 various	 vNFs:	 Streamers	 vNFs	 deployed	 in	 regional	 PoPs,	 Caching	 and	
Transcoding	Orchestrator	and	Transcoding	vNFs	deployed	in	regular	data-centers.	

As	 our	 proposal	 aims	 at	 showing	 how	 vHG	 can	 play	 a	 role	 in	 a	 vNF	 architecture,	 our	 first	
focus	 for	 the	 evaluation	 is	 devoted	 to	 assessing	 vHG	 side	 performance,	 CPU	 and	memory	

#here we make sure that the latest worker docker image is present on the system 
nherbaut/worker: 
  #this command is equivalent to docker pull 
  docker.pulled:  
           #always use the latest version from our continus build system 
    - tag: latest  
    - require: 
             #make sure that docker is installed before pulling the image 
      - sls: docker  
             #make sure that docker daemon is running 
      - service.running: docker 
 
# this set of jinja2 template file is here to provide the broker's IP address 
{%- set minealias = salt['pillar.get']('hostsfile:alias', 'network.ip_addrs') 
%} 
{%- set addrs = salt['mine.get']('roles:broker', minealias,"grain") %} 
{%- set broker_ip= addrs.items()[0][1][0] %} 
 
# this set of instruction is there to provide the the swift proxy ip address 
{%- set addrs = salt['mine.get']('roles:swift_proxy', minealias,"grain") %} 
{%- set swift_proxy_ip= addrs.items()[0][1][0] %} 
 
   
# now we are ready to cook our docker image 
core-worker-container: 
  docker.installed: 
    - name: core-worker-container 
    - image: nherbaut/worker:latest 
     # now we are ready to cook our docker image 
    - environment: 
      - "CELERY_BROKER_URL" : "amqp://guest@{{ broker_ip }}" 
      - "ST_AUTH" : "http://{{ swift_proxy_ip }}:8080/auth/v1.0" 
      - "ST_USER" : "admin:admin" 
      - "ST_KEY" : "admin" 
    - watch: 
      # trigger this event whenever the image is done being pulled 
      - docker: nherbaut/worker	

	 Code	listing	1	an	example	of	infrastructure	code	
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footprint.	Next,	to	evaluate	the	benefits	of	the	overall	vHG+vCDN	system	in	above-cited	use	
case,	 we	made	 extensive	 simulations	with	 hypothesis	 conforming	 to	 a	 French	 network	 of	
Service	Provider.	

2.6.5.1.	 vHG	

	
Table	2-C	vHG	performances	

We	 deployed	 the	 vHG	 as	 an	 OSGi	 bundle	 in	 the	 Apache	 Karaf	 OSGi	 runtime	 on	 a	 VM	
running	 Debian	 Jessie.	 It	 uses	 2Gb	 or	 Ram	 and	 1	 vCore.	 The	 gateway	 connects	 the	 test	
operator	and	a	PC-based	file	server.	

JMeter		was	used	to	capture	the	network	metrics	of	our	solution.	While	generating	HTTP	
requests,	 it	 reports	 on	 specific	 performances	 metrics.	 Each	 experiment	 consisted	 of	 10	
agents	continuously	downloading	target	resources	on	the	HTTP	file	server,	1000	times.	

We	considered	two	different	validation	use	cases:	Web	Traffic	and	File	Transfer.	First,	the	
agents	had	to	download	a	192	MB	video	file,	then	a	single	HTML	page	which	linked	to	171	
static	resources	composed	of	Javascript	files,	CSS	and	images	of	average	size	16	KB.	

We	evaluated	our	solution	with	two	different	routing	rules	settings	deployed	in	the	vHG.	
In	 the	 first	 one,	 we	 did	 not	 deploy	 any	 rule,	 assessing	 only	 the	 overhead	 linked	 to	 the	
application	 network	 framework.	 In	 the	 second	 one,	 however,	 we	 deployed	 10.000	 rules,	
causing	the	vHG	to	process	both	requests	and	responses	wrt	those	rules	thereby	assessing	
its	 ability	 to	 perform	 pattern	 matching	 in	 a	 timely	 manner.	 Both	 cases	 reflect	 the	 no	
operation	scenario	of	our	use	case.	

We	decided	to	assess	the	overhead	caused	the	vHG	by	comparing	 it	 to	the	well-known	
Squid	 3	 HTTP	 proxy	 with	 cache	 deactivated.	 To	 have	 a	 better	 grasp	 of	 the	 amount	 of	
resources	consumed	by	the	vHG,	we	also	reported	CPU	and	memory	consumption	for	each	
settings	as	well.	

From	Table	2-C,	we	can	see	that	the	performances	in	term	of	throughput	is	globally	the	
same	across	all	settings,	with	the	maximum	deviation	from	the	baseline	setting	1	(simple	IP	
forwarding)	being	less	than	0.3%.	In	settings	2-4,	we	also	see	that	a	significant	share	of	CPU	
power	is	dedicated	to	processing	the	requests	for	both	Squid	3	and	the	vHG,	with	the	vHG	
consuming	 up	 to	 a	 25%	 extra	 CPU	 time	 in	 Settings	 4	 wrt	 Settings	 1,	 but	 with	 no	 drop	 in	
throughput.	This	can	be	explained	by	the	fact	that	the	vHG	runs	on	top	of	a	JVM,	while	Squid	
is	a	native	application	with	limited	overhead	wrt	a	Java	application.	

This	 experiment	 does	 not	 intend	 to	 mimic	 real	 life	 Internet	 usages	 but	 to	 stress	 the	
system	up	its	limits.	We	conclude	that	even	with	the	extra	CPU	involved,	our	solution	does	
not	significantly	penalize	the	End-User,	validating	the	possible	deployment	of	vHG.	

2.6.5.2.	 vCDN	

We	 simulated	 the	 network	 deployment	 presented	 in	 Figure	 28,	 with	 the	 hypotheses	
presented	in	Table	2-D	
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Table	2-D	HYPOTHESIS	USED	FOR	SIMULATION	

The	objective	is	first	to	assess	the	feasibility	of	having	a	vHG+vNF	approach	and	second	to	
highlight	 its	benefits.	The	use	case	considers	 the	deployment	of	vHG	and	vCDN	 in	 the	SP’s	
regional	PoPs,	for	video	delivery.	Let	us	thus	investigate	the	potential	of	such	a	solution.	

Streamed	video	needs	good	bitrate	 to	avoid	 re-buffering	and	 improve	QoE.	That	 is	 the	
reason	why	we	defined	an	SLA	violation	as	the	failure	to	deliver	the	proper	average	bitrate	
on	time	to	a	client.	Our	goal	in	this	simulation	is	to	reduce	the	SLA	violations	over	time.	

The	 regional	 PoP	 being	 located	 near	 the	 End-User,	 its	 latency	 is	 reduced	 wrt	 the	 CP	
network	 (backed	 by	 CDN),	 hence	 a	 possible	 higher	 throughput	 for	 HTTP	 traffic	 like	 video	
streaming.	For	our	simulation,	we	included	two	types	of	patterns.	The	first	one	is	composed	
of	video	requests	emitted	regularly	by	the	clients,	which	generate	the	cruising	phase	traffic.	
The	second	consists	of	peak	traffic	at	25s	which	is	characterized	by	a	greater	request	arrival	
rate	as	well	as	a	more	concentrated	distribution	of	videos.	Consumption	peaks	usually	occur	
when	a	viral	video	is	posted,	most	of	the	time	on	the	landing	page	of	the	Content	Provider.	
Being	able	to	cache	this	kind	of	video	and	to	serve	it	as	close	as	possible	to	the	users	is	a	key	
indicator	of	success	for	the	vNF.	
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Figure	29	Evaluation	of	the	benefits	of	the	vHG+vCDN	system.	

Figure	 29	 depicts	 two	 scenarios.	 In	 (A),	 we	 only	 rely	 on	 CP	 network	 to	 deliver	 the	media	
while	 in	 (B)	 a	 single	 regional	 PoP	 is	 added	 to	 the	 solution.	 Note	 that	 global	 bandwidth	
remains	 the	 same,	 as	we	 took	 some	bandwidth	 from	 the	 CP	 to	 allocate	 it	 to	 the	 regional	
PoP.	 This	 is	 also	 essential	 for	 the	 CP	 for	 comparing	 at	 the	 end	 the	 solutions	 in	 terms	 of	
bandwidth	cost.	

We	can	see	that	the	cruising	phase	does	not	generate	any	SLA	violation	and	the	CP	alone	is	
able	 to	 handle	 the	 traffic	 load.	 However,	 when	 the	 peak	 occurs,	 SLA	 violations	 increase	
dramatically,	causing	a	lot	of	requests	to	be	dropped.	In	scenario	B,	however,	the	presence	
of	the	regional	PoP	as	an	alternative,	low	latency	data	source,	mitigate	the	peak	effect	and	
reduces	up	to	70%	of	SLA	violations	on	the	overall	simulation	period.	

Having	 a	 regional	 PoP	 with	 lower	 network	 latency	 to	 serve	 highly	 redundant	 requests,	
benefits	both	the	End-User	and	the	content	provider.	As	the	former	sees	an	increase	in	QoE,	
the	 latter	 reduces	 its	 costs	 by	 avoiding	 the	 over	 provisioning	 of	 network	 capabilities.	 It’s	
important	however,	to	reserve	regional	PoP	bandwidth	to	serve	only	highly	popular	videos,	
so	 as	 to	 maximize	 its	 benefits,	 while	 keeping	 the	 mean	 latency	 low	 between	 clients	 and	
regional	PoPs	by	spreading	PoPs	over	the	territory.	

2.6.6. Future	Work	

The	next	 step	 for	 vHG+vCDN	 in	WP5	 is	 to	deploy	on	 a	 fully	 functional	 testbed,	 assess	 the	
performance	of	the	overall	solution	and	implement	scaling	based	on	metric	analysis.	

We	may	also	consider	a	use	case	where	hardware	acceleration	is	used	through	vTU	in	order	
to	accelerate	the	availability	of	cached	content	on	the	vStreamer.	
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2.7. ProXy	as	a	Service	VNF	(PXaaS)	

2.7.1. Introduction	

A	 Proxy	 server	 is	 a	middleware	 between	 clients	 and	 servers.	 It	 handles	 requests,	 such	 as	
connecting	to	a	website	or	service	and	fetching	a	file,	sent	from	a	client	to	a	server.	 In	the	
most	 cases	 a	 proxy	 acts	 as	 a	 web	 proxy	 allowing	 or	 restricting	 access	 to	 content	 on	 the	
World	Wide	Web.	 In	 addition,	 it	 allows	 clients	 to	 surf	 the	Web	 anonymously	 by	 changing	
their	IP	address	to	the	Proxy’s	IP	address.		

A	proxy	server	can	protect	a	network	by	filtering	traffic.	For	 instance,	a	company’s	policies	
require	 that	 its	 employees	 are	 restricted	 to	 access	 some	 specific	 web	 sites,	 such	 as	
Facebook,	during	working	hours	but	they	are	allowed	to	access	them	during	break	times	or	
are	 restricted	 to	 access	 adult-content	 sites	 at	 all	 times.	 Furthermore,	 a	 proxy	 server	 can	
improve	response	times	by	caching	frequently	used	web	content	and	 introduce	bandwidth	
limitations	 to	 a	 group	 of	 users	 or	 individuals.	 Traditionally,	 proxy	 software	 resides	 inside	
users’	 LANs	 (behind	 NAT	 or	 Gateway).	 It	 is	 deployed	 on	 a	 physical	 machine	 and	 all	 local	
devices	can	connect	to	the	Internet	through	the	proxy	by	changing	their	browser’s	settings	
accordingly.	However,	a	device	can	bypass	the	proxy.	A	stronger	alternative	deployment	 is	
to	 configure	 the	 proxy	 to	 act	 as	 a	 transparent	 proxy	 server	 so	 that	 all	 web	 requests	 are	
forced	to	go	through	the	proxy.	In	this	scenario	the	gateway/router	should	be	configured	to	
forward	all	web	requests	to	the	proxy	server.	

The	 Proxy	 as	 a	 Service	 VNF	 (PXaaS	 VNF)	 aims	 to	 provide	 proxy	 services	 on	 demand	 to	 a	
Service	Provider’s	 subscribers	 (either	home	users	e.g.	ADSL	 subscribers	or	 corporate	users	
such	as	company	subscribers).	The	idea	behind	the	PXaaS	VNF	is	to	move	the	proxy	from	the	
LAN	 to	 the	 cloud	 in	 order	 to	 be	 used	 “as	 a	 service”.	 Therefore,	 a	 subscriber	 (e.g.	 LAN	
administrator)	will	be	able	to	configure	the	proxy	from	a	web-based	user	friendly	dashboard	
and	according	to	their	needs	so	that	it	can	be	applied	to	the	devices	within	the	LAN.		

2.7.2. Requirements	

The	table	below	provides	the	major	requirements	that	the	VNF	will	need	to	fulfill.		

		

Table	2-E:	PxaaS	VNF	requirements	

Requirement	
ID		

Requirement	
name		

Description		 Priority	
level		

1		 Web	caching		 The	PXaaS	VNF	should	be	able	to	cache	web	
content.		

High		

2		 User	anonymity		 The	PXaaS	VNF	should	allow	 for	hiding	 the	
user’s	 IP	 address	 when	 accessing	 web	
pages.	The	proxy	VNF’s	IP	should	be	shown	
instead	of	the	user’s	real	IP.		

High		

3		 Bandwidth	 rate	
limitation	per	user		

The	 PXaaS	 VNF	 should	 allow	 for	 setting	
bandwidth	 rate	 limitations	 on	 a	 group	 of	
users	 or	 individual	 users	 by	 creating	 ACLs	
based	on	their	account.		

High		

4		 Bandwidth	 rate	
limitation	 per	

The	 PXaaS	 VNF	 should	 allow	 for	 setting	
bandwidth	 rate	 limitations	 on	 a	 group	 of	

Low		
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service		 services	or	individual	services.	For	example,	
the	 PXaaS	 VNF	 should	 limit	 the	 bandwidth	
used	for	torrents.		

5		 Bandwidth	
throttling	 on	 huge	
downloads		

The	 PXaaS	 VNF	 should	 allow	 for	 reducing	
the	 bandwidth	 rate	when	 huge	 downloads	
are	detected.	It	could	be	applied	to	all	users	
or	a	group	of	users	or	individuals.		

High		

6		 Web	 access	
control		

The	 PXaaS	 VNF	 should	 allow	 for	 blocking	
specific	websites	by	the	users.		

High		

7		 Web	 access	
control	(time)		

The	PXaaS	VNF	should	allow	for	blocking	or	
accessing	 specific	 websites	 by	 the	 users	
based	on	the	current	time.		

Medium		

8		 User	 Control	 and	
Management		

The	 user	 should	 be	 able	 to	 configure	 the	
PXaaS	 VNF	 using	 a	 dashboard.	 The	
dashboard	should	be	responsive	in	order	to	
be	 accessible	 from	 multiple	 devices	 and	
easy	to	use.		

High		

9		 Service	availability		 The	Proxy	VNF	should	be	available	as	soon	
as	 the	 user	 sets	 the	 configuration	
parameters	on	 the	dashboard.	Each	 time	a	
user	 changes	 configuration,	 the	 service	
should	be	available	immediately.		

High		

10		 Service	accessibly		 The	 connection	 with	 the	 proxy	 should	 be	
transparent	 (transparent	 proxy).	 Users	 do	
not	 need	 to	 set	 the	 proxy’s	 IP	 on	 their	
browser.	 The	 traffic	 should	 be	 redirected	
from	the	user’s	LAN	to	the	proxy	VNF.		

Low		

11		 Service	 –	 user	
authentication		

Only	subscribed	PXaaS	VNF	users	should	be	
able	to	access	the	service.		

High		

12		 Monitoring		 The	 proxy	 VNF	 should	 provide	 metrics	 to	
the	T-NOVA’s	monitoring	agent.		

High		

13		 Service	
provisioning		

The	proxy	VNF	should	expose	an	API	 to	be	
used	 by	 the	 T-NOVA’s	 middleware	 for	
service	provisioning.		

High		

2.7.3. Architecture	

The	PXaaS	VNF	consists	of	one	VNFC.	The	VNFC	implements	both	the	proxy	server	software	
as	well	as	 the	web	server	software.	The	figure	below	provides	a	high	 level	 topology	of	 the	
PXaaS	VNF.	The	VNFC	is	located	at	the	PoP	which	is	found	between	the	user’s	LAN	and	the	
Operator’s	 backbone.	 Once	 a	 user	 is	 subscribed	 with	 the	 PXaaS	 VNF	 the	 traffic	 from	 the	
user’s	 LAN	 is	 redirected	 to	 the	PoP	and	 then	 it	 passes	 through	 the	PXaaS	VNF.	 The	 traffic	
might	pass	through	some	other	VNFs	according	to	service	function	chaining	policies.	Finally,	
the	proxy	handles	the	requests	accordingly	and	forwards	the	traffic	to	the	Internet.	The	user	
is	able	to	configure	the	proxy	through	an	easy	to	use	web-based	dashboard	which	is	served	
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by	the	web	server.	The	web	server	communicates	with	the	proxy	server	 in	order	to	set	up	
the	configuration	parameters	which	have	been	defined	by	the	user.		

 

Figure	30.	PXaaS	high	level	architecture	

2.7.4. Functional	description	

2.7.4.1.	 Squid	Proxy	server	

Squid	Proxy	is	a	caching	and	a	web	proxy.	Some	of	its	major	features	include:		

• Web	caching;	
• Anonymous	Internet	access;	
• Bandwidth	control.	It	introduces	bandwidth	rate	limitations	or	throttling	to	a	group	

of	users	or	individuals.	For	example	it	allows	“normal	users”	to	share	some	amount	
of	traffic	and	on	the	other	hand	it	allows	“admin	users”	to	use	a	dedicated	amount	
of	traffic;	

• Web	access	restrictions	e.g.	allow	a	company’s	employees	to	access	Facebook	
during	lunch	time	only	and	deny	access	to	some	specific	web	sites.	

Bandwidth	limitation	examples	

a)	Bandwidth	restrictions	based	on	IP		

The	example	below	creates	an	Access	Control	List	(ACL)	with	the	name	“regular_users”	and	
is	 assigned	 a	 range	 of	 IP	 addresses.	 Requests	 coming	 from	 those	 IPs	 are	 restricted	 to	
500KBps	bandwidth.		
acl regular_users src 192.168.1.10 – 192.168.1.20/32 # acl list based 
on IPs 
delay_pools 1 
delay _class 1 1 
delay_parameters 1 500000/500000 # 500KBps 
delay_access 1 allow regular_users 
 
The	limitation	of	this	configuration	is	that	Squid	should	be	located	inside	the	LAN	in	order	to	
understand	the	private	IP	address	space.		
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b)	Bandwidth	restrictions	based	on	user		

The	following	scenario	performs	the	same	bandwidth	restrictions	as	the	previous	one	except	
that	the	ACL	is	based	on	user	accounts.	Squid	supports	various	authentication	mechanisms	
such	as	LDAP,	Radius	and	MySQL	database.	We	consider	MySQL	database	for	authenticating	
with	the	PXaaS	VNF.		
acl regular_users proxy_auth george savvas # acl list based on 
usernames 
delay_pools 1 
delay _class 1 1 
delay_parameters 1 500000/500000 # 500KBps 
delay_access 1 allow regular_users 
 
The	 limitation	of	 this	configuration	 is	 that	users	must	authenticate	with	the	Proxy	the	 first	
time	they	visit	their	browser.	In	this	case	the	proxy	is	not	considered	as	a	transparent	proxy.	
However,	by	using	this	scenario,	Squid	can	be	deployed	on	the	cloud	and	can	handle	devices	
behind	NAT	as	long	as	they	authenticate	with	the	proxy.		

 

Figure	31.	Proxy	authentication	

2.7.4.2.	 Apache	Web	Server	

Apache	 web	 server	 is	 used	 to	 serve	 the	 dashboard	 to	 the	 clients.	 The	 dashboard	 is	
responsible	 to	 allow	 users	 to	 configure	 and	 manage	 the	 Squid	 proxy.	 Therefore,	 Apache	
should	 have	 write	 permissions	 on	 Squid’s	 configuration	 file.	 In	 addition,	 the	 LAN	
administrator	is	able	to	create	user	accounts	which	are	stored	in	the	MySQL	database.	The	
LAN	administrator	will	be	responsible	to	assign	the	user	accounts	to	each	device	in	order	to	
achieve	the	limitations	he	envisions	using	the	PXaaS.		

The	 figure	below	presents	 the	 first	 version	of	 the	dashboard	 (version	1).	 In	particular,	 the	
home	 page	 of	 the	 dashboard	 is	 presented.	 The	 current	 version	 supports	 the	 following	
features:	

• User	management:	User	accounts	can	be	created	with	a	username	and	password.	
Those	accounts	are	used	to	access	the	proxy	services;	

• Access	control:	Users	must	enter	their	credentials	in	their	browsers	in	order	to	surf	
the	web;	

• Bandwidth	limitations:	Group	of	users	can	be	created	with	a	shared	amount	of	
bandwidth.	In	this	case	bandwidth	limitations	can	be	introduced	to	a	group	of	users;	

• Website	filtering:	Group	of	users	can	be	created	with	restricted	access	to	a	list	of	
websites.	Pre-defined	lists	with	urls	are	provided;	

• Web	caching:	Web	caching	can	be	enabled	in	order	to	cache	web	content	and	
improve	response	time;	

• User	Anonymity:	Users	can	surf	the	web	anonymously.	
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Figure	32.	PXaaS	Dashboard.	

2.7.4.3.	 MySQL	Database	server	

MySQL	 Database	 server	 maintains	 a	 list	 of	 user	 accounts	 that	 can	 be	 used	 for	 proxy	
authentication	 in	 the	 browser.	 In	 addition	 it	 stores	 all	 the	 required	 data	 needed	 by	 the	
dashboard.		

2.7.4.4.	 SquidGuard	

SquidGuard	 is	used	on	 top	of	 Squid	 in	order	 to	block	URLs	 for	 a	 group	of	users.	 It	 is	used	
based	on	pre-defined	black	lists.		

2.7.4.5.	 Monitoring	Agent	

The	Monitoring	Agent	is	responsible	for	collecting	and	sending	monitoring	metrics	to	the	T-
NOVA	Monitoring	component.		

2.7.5. Interfaces	

The	figure	below	shows	the	VNFC	 in	an	OpenStack	environment.	 It	consists	of	3	 interfaces	
connected	to	3	networks.		
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Figure	33.	PXaaS	in	OpenStack	

• eth0:	This	is	the	data	interface.	A	floating	IP	is	associated	with	this	interface	in	order	to	
send	and	receive	data	to/from	the	Public	network.		

• eth1:	This	is	the	monitoring	interface	which	will	be	used	to	send	metrics	periodically	to	
the	Monitoring	component.		

• eth2:	This	is	the	management	interface	which	will	be	used	in	order	to	communicate	with	
the	middleware	API.		

2.7.6. Technologies	

The	 development	 environment	 used	 for	 the	 implementation	 and	 testing	 of	 the	 PxaaS	 is	
Vagrant	with	Virtualbox	on	an	Ubuntu	14.04	Desktop	machine.	The	VM	 itself	 runs	Ubuntu	
14.04	server	OS.		

As	 described	 in	 the	 Functional	 description	 section,	 Squid	 Proxy,	 SquidGuard,	 Apache	Web	
server	and	MySql	Database	server	are	used.	Specifically,	the	exact	versions	are:		

• Squid	Proxy	3.5.5		
• SquidGuard	1.5		
• Apache2	2.4.7		
• Mysql	5.5.44-0ubuntu0.14.04.1		
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The	Dashboard	has	been	developed	with	the	Yii	framework	(a	PHP	framework)	for	the	server	
side	and	CSS,	HTML,	Jquery	have	been	used	for	the	client	side.		

As	regards	the	monitoring	agent	two	different	components	have	been	used:		

1. Collectd.	It	collects	system	performance	statistics	periodically	such	as	CPU	and	
memory	utilization.		

2. A	python	script	which	collects	PxaaS	VNF	specific	metrics	such	as	the	number	of	
HTTP	requests	received	by	the	proxy	and	the	cache	hits	percentage.	The	script	
analyses	the	results	received	by	the	squidclient,	a	tool	which	provides	Squid's	
statistics,	and	send	them	to	the	T-NOVA	Monitoring	component	periodically.		

Mozilla	Firefox	is	used	for	accessing	Web	through	the	proxy.		

2.7.7. Dimensioning	and	Performance	

Some	preliminary	tests	were	performed	in	order	to	verify	whether	the	expected	behavior	is	
achieved.	We	assume	that	access	to	the	PXaaS	Dashboard	is	given	to	a	user	who	acts	as	the	
administrator	 of	 his	 LAN	 in	 a	 home	 scenario.	 Therefore,	 the	 "administrator"	 sets	 up	 the	
Proxy	service	for	his	LAN	via	the	dashboard	and	creates	user	accounts	in	order	to	allow	other	
users/devices	 to	 access	 the	 Web	 via	 the	 Proxy.	 Specifically,	 the	 current	 version	 of	 the	
Dashboard	was	tested	against	the	following	test	scenarios:		

a)	Testing	web	access	and	bandwidth	control.	This	scenario	aims	to	test	if	a	newly	created	
user	is	able	to	access	the	Web	using	their	credentials	and	bandwidth	limitation	is	achieved.		

Execution:	 The	 administrator	 creates	 a	 new	 user	 by	 providing	 a	 username	 and	 password.	
Then	 he	 adds	 the	 newly	 created	 user	 under	 “research”	 group	 (the	 group	 was	 previously	
created	 by	 the	 administrator)	 which	 is	 restricted	 to	 512Kbps	 bandwidth.	 The	 new	 user	
authenticates	with	the	proxy	from	the	browser	and	downloads	a	big	file.		

b)	Testing	web	site	filtering.	The	scenario	tests	whether	a	user	is	restricted	to	access	some	
websites.		

Execution:	The	administrator	adds	the	user	to	the	group	“social_networks”	(the	group	was	
previously	created	by	the	administrator	and	a	pre-defined	list	of	social	networking	websites	
was	assigned	to	that	group)	in	which	all	social	networking	websites	are	denied.		

c)	Testing	web	caching.	This	scenario	tests	whether	web	caching	works	properly.		

Execution:	 Two	 different	 users	 access	 the	 same	 websites	 from	 different	 computers.	 For	
example	 “user1”	 accesses	 www.primetel.com.cy	 and	 then	 “user2”	 accesses	 the	 same	
website.		

d)	Testing	user	anonymity.	This	 scenario	checks	whether	a	user	 is	able	 to	access	 the	Web	
anonymously.	 In	 order	 to	 test	 this	 scenario	 and	 get	 meaningful	 results	 we	 deployed	 the	
PXaaS	VNF	on	a	server	with	public	IP.		

Execution:	 The	administrator	 enables	 the	user	 anonymity	 feature	 for	 a	user.	 http://ip.my-
proxy.com/	website	is	used	in	order	to	check	whether	user's	real	IP	is	publicity	visible.		

2.7.7.1.	 Test	results	

Below	the	results	by	executing	the	test	scenarios	are	presented.		

a)	Once	a	user	is	authenticated	with	the	Proxy	he	is	able	to	access	the	Web.	Then	he	starts	
to	 download	 an	 iso	 file.	 As	 we	 can	 see	 from	 the	 image	 below,	 the	 download	 speed	 is	
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restricted	 to	61,8	KB/sec	which	 is	around	 to	500	Kb/sec	 (as	we	have	expected).	 If	another	
user	 starts	 to	 download	 a	 big	 file	 as	 well,	 then	 both	 users	 will	 share	 the	 512Kb/sec	
bandwidth.		

 

Figure	34.	Bandwidth	limitation	

b)	A	user	tries	to	access	www.facebook.com	with	no	success.	The	proxy	denies	access	to	the	
particular	website.		

 

Figure	35.	Access	denied	to	www.facebook.com	

c)	 The	 figure	 below	 shows	 the	 Squid's	 logs.	 In	 particular,	 it	 shows	 all	 the	 HTTP	 requests	
received	by	Squid	from	the	clients	and	whether	those	requests	result	in	cache	hits.	It	can	be	
observed	that	the	particular	requests	were	served	from	the	Squid's	cache.	“TCP_MEM_HIT”	
shows	that	a	request	was	served	from	Squid's	Memory	Cache	(from	the	RAM).		
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Figure	36.	Squid's	logs	

d)		Figure	37	shows	the	results	from	http://ip.my-proxy.com/	when	a	user	accesses	the	Web	
without	having	the	user	anonymity	featured	enabled.	The	most	important	fields	are:		

1. “HTTP_X_FORWARDED_FOR”	.	It	shows	the	user's	public	IP	(e.g.	217.27.32.7)	
address	along	with	the	Proxy's	IP	(e.g.	217.27.59.141)		

2. “HTTP_VIA”.	It	show	the	proxy's	version	(e.g.	squid	3.5.5)		
3. “HTTP_USER_AGENT”.	It	shows	the	user's	browser	information	(e.g.	Mozilla/5.0	

(X11;	Ubuntu;	Linux	x86_64;	rv:41.0)	Gecko/20100101	Firefox/41.0).		

 

Figure	37.	Results	taken	from	http://ip.my-proxy.com/	without	user	anonymity	
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Figure	38	shows	the	results	while	a	user	accesses	the	Web	anonymously.	It	can	be	observed	
that	 the	 user's	 real	 IP	 is	 hidden	 and	 instead	 the	 Proxy's	 IP	 is	 shown.	 In	 addition	 the	
information	about	the	proxy	and	the	user's	browser	information	are	hidden.		

 

Figure	38.	Results	taken	from	http://ip.my-proxy.com/	with	user	anonymity.	
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3. CONCLUSIONS	AND	FUTURE	WORK	

3.1. Conclusions	

In	 this	 document,	 general	 guidelines	 for	 the	 development	 of	 Virtual	Network	 Functions	 in	
the	 T-Nova	 framework	 have	 been	 provided.	 Specific	 descriptions	 of	 the	 Virtual	 Network	
Functions	 under	 development	 in	 the	 project	 have	 been	 given,	 together	 with	 some	
preliminary	test	results.	The	six	VNF’s	under	development	have	been	described	in	detail,	and	
the	 different	 technologies	 as	 well	 as	 the	 contributions	 coming	 from	 the	 open	 source	
community	used	in	the	development	have	been	discussed.	The	obtained	results	clearly	show	
how	VNF	development	can	greatly	benefit	both	from	open	source	software,	as	well	as	from	
the	 latest	 hw	 development.	 Also,	 some	 computational	 intensive	 functions	 have	 been	
implemented,	 without	 any	 significant	 loss	 in	 performance	 due	 to	 the	 adoption	 of	
virtualization	technologies.	

The	 presented	 VNF’s	 cover	 a	 wide	 spectrum	 of	 applications,	 and	 can	 thus	 provide	 useful	
guidelines	 to	new	developers	who	are	willing	 to	create	new	functions	 to	be	used	 in	 the	T-
Nova	 framework.	 To	 this	 end,	 the	 initial	 paragraph	 of	 this	 document	 provide	 general	
information	 that	can	be	useful	 to	new	developers	 through	all	 the	development	phase	of	a	
new	VNF.		

3.2. Future	work	

In	 the	 next	 steps,	 the	 integration	 of	 the	 developed	 Virtual	 Network	 Functions	 has	 to	 be	
finalized,	 considering	 aspects	 such	 as	 scaling	 or	 high	 availability.	 The	 combination	 of	
different	Virtual	Network	Functions	 in	order	to	create	new	attractive	Network	Services	will	
be	addressed.	
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5. LIST	OF	ACRONYMS	

Acronym	 Explanation	

3GPP	 Third	Generation	Partnership	Project	

API	 Application	Programming	Interface	

BGF	 Border	Gateway	Function	

CAPEX	 Capital	Expenditures	

CLI	 Command	Line	Interface	

CRUD	 Create,	Read,	Update,	Delete	

DDoS	 Distributed	Denial	of	Service	

DFA	 Deterministic	Finite	Automaton	

DHCP		 Dynamic	Host	Configuration	Protocol	

DoS	 Denial	of	Service	

DPDK	 Data	Plane	Development	Kit	

DPI	 Deep	Packet	Inspection	

DPS	 Data	Plane	Switch	

DSP	 Digital	Signal	Processor	

DUT	 Device	Under	Test	

EMS	 Element	Management	System	

ETSI	 European	Telecommunications	Institute	

FW	 Firewall	

HGI	 Home	Gateway	Initiative	

HPC	 High	Performance	Computing	

HTTP	 Hyper	Text	Transport	Protocol	

IBCF	 Interconnection	Border	Control	Function	

IDS	 Intrusion	Detection	System	

IETF		 Internet	Engineering	Task	Force	

IOMMU	 I/O	Memory	Management	Unit	

ITU-T	 International	 Telecommunication	 Union	 –	
Telecommunication	Standardization	Bureau	

JSON	 JavaScript	Object	Notation	

KVM	 Kernel-based	Virtual	Machine	

LB	 Load	Balancer	

MANO	 Management	and	Orchestration	
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Acronym	 Explanation	

MIB	 Management	Information	Base	

NAT	 Network	Address	Translation	

NDVR	 Network	Digital	Video	Recorder	

NETCONF	 Network	Configuration	Protocol	

NF	 Network	Function	

NFaaS	 Network	Function	as	a	Service	

NFVI	 Network	Function	Virtualization	Infrastructure	

NIO		 Non	Blockio	I/O	

NN	 Neural	Network	

NPU	 Network	Processor	Unit	

NSIS	 Next	Steps	In	Signaling	

O&M	 Operating	and	Maintenance	

OPEX	 Operational	Expenditures	

OSGI	 Open	Service	Gateway	Initiative	

OTT	 over-the-top	

PCI	 Peripheral	Component	Interconnect	

PCIe	 Peripheral	Component	Interconnect	Express	

POC	 Proof	of	Concept	

PSNR	 Peak	Signal-to-Noise	Ratio		

QoE		 Quality	of	Experience	

RAID	 Redundant	Array	of	Independent	Disks	

REST	 Representational	State	Transfer	

RFC	 Request	For	Comments	

RGW	 Residential	Gateway	

RTP	 Real-time	Transport	Protocol	

SA	 Security	Appliance	

SBC	 Session	Border	Controller	

SIMCO	 Simple	Middlebox	Configuration	

SIP	 Session	Initiation	Protocol	

SNMP	 Simple	Network	Management	Protocol	

SOM	 Self	Organizing	Maps	

SQL	 Structured	Query	Language	

SR-IOV	 Single	Root	I/O	Virtualization	
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Acronym	 Explanation	

SSH	 Secure	Shell	

STB	 Set	Top	Box	

TSTV	 Time	Shifted	TV	

UTM	 Unified	Threat	Management	

vCPE	 virtualized	customer	premises	equipment	

VF	 Virtual	Firewall	

vHG	 Virtual	Home	Gateway	

VIM	 Virtual	Infrastructure	Manager	

VM	 Virtual	Machine	

VNF	 Virtual	Network	Function	

VOD	 Video	On	Demand	

VQM	 Video	Quality	Metric		

vSA	 Virtual	Security	Appliance	

vSBC	 Virtual	Session	Border	Controller	

XML	 Extensible	Markup	Language	
	


