
	

	

	

	

	 	

Deliverable	D5.1	

Network	Function	Store	

	 	

Editor	 Nicolas	Herbaut	(Viotech)	

Contributors:		 Aurora	Ramos,	Javier	Melián	(ATOS),	Enzo	Figini,	Paolo	Comi	
(Italtel),	Yacine	Rebahi	(Fokus)	

Version	 1.0	

Date	 30/10/2015	

Distribution	 PUBLIC	(PU)	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
2	

Executive	Summary	

In	 T-NOVA,	 the	 Function	 Store	 is	 the	 software	 component	 responsible	 for	 maintaining	 a	
repository	 of	 (1)	 the	 binaries	 composing	 each	 Virtual	 Network	 Function	 and	 (2)	 their	
metadata	files.		

It	 is	not	 intended	 to	have	any	user-facing	 interface,	but	 it	 is	designed	 to	publish	APIs	 that	
other	 T-NOVA	 components	 will	 use	 to	 perform	 CRUD	 (Create-Read-Update-Delete)	
operations	on	the	resources	it	stores.	

First	 of	 all,	 it	 allows	 Network	 Function	 Developers	 to	 securely	 upload	 their	 Network	
Functions	along	with	other	metadata	files	needed	for	the	configuration	through	the	T-NOVA	
Market	Place	Dashboard	

Then	 it	 allows	 T-NOVA	 Marketplace	 Brokerage	 Module	 to	 retrieve	 Network	 Function	
metadata	enabling	service	advertisement,	request	and	brokerage/trading.	

Finally	 it	 allows	 T-NOVA	 Orchestrator	 to	 retrieve	 VNF	 binaries	 and	 their	 metadata	 to	
onboard	them	onto	the	platform.	 It	 is	also	responsible	to	notify	the	Orchestrator	 in	case	a	
VNF	is	updated	or	deleted.	

The	 NF	 Store	 has	 been	 developed	 in	 the	WP5	 “Network	 Functions”	 work-package	 of	 the	
project.	 It	 gets	 its	 inputs	 from	 WP3	 “Orchestrator	 Platform”	 and	 from	 WP6	 “T-NOVA	
Marketplace	for	which	it	exposes	its	API.		 	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
3	

	

Table	of	Contents	

1.	INTRODUCTION	..............................................................................................................	6	

2.	NETWORK	FUNCTION	STORE	..........................................................................................	7	

2.1.	REQUIREMENTS	..................................................................................................................	7	
2.1.1.	General	requirements	..............................................................................................	7	
2.1.2.	Functional	requirements	..........................................................................................	7	
2.1.3.	Non-Functional	Requirements	.................................................................................	7	

3.	ARCHITECTURE	...............................................................................................................	8	

3.1.	HIGH	LEVEL	ARCHITECTURE	..................................................................................................	8	
3.2.	LOW	LEVEL	ARCHITECTURE	...................................................................................................	9	

3.2.1.	Web	Application	......................................................................................................	9	
3.2.2.	Database	.................................................................................................................	9	
3.2.3.	NFS	service	.............................................................................................................	10	

3.3.	FUNCTIONAL	DESCRIPTION	..................................................................................................	13	
3.3.1.	Publication	.............................................................................................................	13	
3.3.2.	Modification	..........................................................................................................	15	
3.3.3.	Removal	.................................................................................................................	17	
3.3.4.	Retrieval	................................................................................................................	18	
3.3.5.	List	.........................................................................................................................	19	

4.	INTERFACES	..................................................................................................................	21	

4.1.	FILES	INTERFACE	...............................................................................................................	21	
4.1.1.	Upload	file	to	NFStore	...........................................................................................	21	
4.1.2.	Download	file	from	NFStore	..................................................................................	22	
4.1.3.	Update	NFStore	file	...............................................................................................	23	
4.1.4.	Delete	NFStore	files	...............................................................................................	24	
4.1.5.	Get	NFStore	files	list	..............................................................................................	25	

4.2.	VNF	DESCRIPTORS	INTERFACE	.............................................................................................	25	
4.2.1.	Add	VNF	Descriptor	to	NFStore	..............................................................................	25	
4.2.2.	Get	NFStore	VNF	Descriptor	..................................................................................	26	
4.2.3.	Modify	NFStore	VNF	Descriptor	.............................................................................	27	
4.2.4.	Delete	NFStore	VNF	Descriptor	..............................................................................	27	
4.2.5.	Get	NFStore	VNF	Descriptor	list	.............................................................................	28	

4.3.	MANAGEMENT	INTERFACE	.................................................................................................	28	

5.	TECHNOLOGIES	.............................................................................................................	30	

6.	DIMENSIONING	AND	PERFORMANCE	...........................................................................	31	

7.	CONCLUSIONS	AND	FUTURE	WORK	..............................................................................	32	

7.1.	CONCLUSIONS	..................................................................................................................	32	
7.2.	FUTURE	WORK	..................................................................................................................	32	

8.	LIST	OF	ACRONYMS	......................................................................................................	33	

9.	REFERENCES	.................................................................................................................	34	

	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
4	

	

	 	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
5	

Index	of	Figures	

Figure	1.	Interfaces	with	other	T-NOVA	components	...............................................................	6	
Figure	2.	High	Level	Architecture	..............................................................................................	8	
Figure	3	Web	application	Architecture	.....................................................................................	9	
Figure	4.	Relational	Schemas	..................................................................................................	10	
Figure	5.	Starting	the	NF	Store	................................................................................................	11	
Figure	6.	Stopping	the	NF	Store	..............................................................................................	12	
Figure	7.	Retrieving	the	status	of	the	NF	Store	.......................................................................	12	
Figure	8.	Upload	VNF	descriptor	.............................................................................................	14	
Figure	9.	Upload	VNF	file	.........................................................................................................	15	
Figure	10.	Update	VNF	descriptor	...........................................................................................	16	
Figure	11.	Update	VNF	file	......................................................................................................	16	
Figure	12.	Remove	VNF	descriptor	..........................................................................................	17	
Figure	13.	Remove	VNF	file	.....................................................................................................	18	
Figure	14.	Get	VNF	descriptor	.................................................................................................	18	
Figure	15.	Get	VNF	file	............................................................................................................	19	
Figure	16.	List	VNF	descriptors	................................................................................................	19	
Figure	17.	List	VNF	files	...........................................................................................................	20	

	

Index	of	Tables	

Table	1		Configuration	options	of	nfs.conf	..............................................................................	10	
Table	2	An	image	file	deployed	with	its	md5	hash	..................................................................	13	
	

	 	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
6	

1. INTRODUCTION	

The	 NF	 Store	 is	 mainly	 a	 repository	 for	 the	 VNFs’	 software	 images	 and	 their	 metadata	
descriptions.		

	
Figure	 1	 below	 shows	 a	 high	 level	 architectural	 description	 of	 the	 relationships	 of	 the	NF	
Store	and	VNFs	with	 the	other	elements	of	T-NOVA	architecture,	namely	 the	Orchestrator	
and	the	Marketplace	modules.	

	
Figure	1.	Interfaces	with	other	T-NOVA	components	

Software	 developers	 can	 upload	 VNF	 images	 into	 the	 NF	 Store	 along	 with	 metadata	
descriptor	 containing	 both	 technical	 and	 business	 related	 information,	 such	 as	 business	
description	of	the	cost	of	using	such	VNF.	

The	description	of	the	VNFs	 in	the	NF	Store	 is	made	available	to	the	T-NOVA	Marketplace.	
Whenever	a	VNF	is	chosen	for	being	part	of	a	service,	the	T-NOVA	Orchestrator	will	get	the	
VNF	image	for	deploying	and	executing	it	over	the	virtualized	execution	environment.	

	 	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
7	

2. NETWORK	FUNCTION	STORE	

2.1. Requirements	

The	main	requirements	for	the	Network	Function	Store	are	summarized	here.	

2.1.1. General	requirements	

1. The	NF	Store	is	the	repository	for	the	VNF	images	and	its	metadata	
2. A	VNF	can	be	composed	of	x	VM	images	and	one	metadata	descriptor		
3. The	 VNF	 metadata	 descriptor	 and	 all	 the	 VM	 images	 composing	 a	 VNF	 shall	 be	

correlated,	i.e.	associated	to	a	unique	identifier	(VNF-id)	
4. The	VNF-id	is	part	of	the	VNF	metadata	descriptor.		
5. A	VNF	can	be	versioned		

2.1.2. Functional	requirements	

1. The	NF	Store	informs	the	orchestrator	whenever	a	VNF	is	added	to	or	removed	from	
the	repository	

2. The	 NF	 Store	 supports	 the	 following	 interfaces:	 T-Da-Nfs	 (Interface	 to	 the	
DashBoard,	T-OR-Nfs	(Interface	to	the	Orchestrator)	

3. T-DA-NFS	 shall	 allow	 to	 upload	 the	 VNF	 metadata	 descriptor	 and	 each	 VNF	 VM	
image		

4. T-DA-NFS	shall	allow	removing	a	VNF.	Then,	all	VNF	components	are	deleted	 from	
the	NF	Store	

5. T-OR-NFS	 shall	 allow	 to	download	 the	VNF	metadata	descriptor	and	each	VNF	VM	
image	

6. The	operations	over	the	supported	interfaces	shall	be	allowed	upon	authentication	
and	authorization	

2.1.3. Non-Functional	Requirements	

1. The	NF	 Store	 shall	 provide	 storage	 capacity	 for	 a	 reasonable	 number	of	VNFs	 and	
VM	images.	These	numbers	belong	to	the	set	of	NF	Store	configuration	parameters	
that	shall	be	provided	at	NF	Store	deployment	time		

2. The	 NF	 Store	 shall	 not	 introduce	 additional	 performance	 constraints	 beyond	 the	
available	bandwidth	and	throughput	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
8	

3. ARCHITECTURE		

3.1. High	Level	Architecture	

High	level	breakup	of	the	NF	Store	includes:		

• NFS	repository	:	contains	the	VNF	images		
• NFS	 database	:	 contains	 the	 VNF	 metadata	 and	 all	 data	 needed	 by	 the	 Web	

application		
• NFS	Web	application:	application	logic	governing	the	repository	and	the	interactions	

over	 the	 exposed	 interfaces	 and	 implementing	 the	 Network	 Function	 Store	
functionality	

• NFS	interfaces:	provides	interfaces	for	interacting	with	the	NF	Store		
• NFS	Manager	:	application	to	manage	the	NF	Store		

	
Figure	2.	High	Level	Architecture	

The	NF	Store	provides	REST	 interfaces	 to	 the	orchestrator	 (T-OR-NFS)	and	marketplace	 (T-
DA-NFS	and	T-BR-NFS);	an	additional	shell	interface	is	provided	by	NFS	manager	and	is	used	
to	 manage	 the	 NF	 Store	 service	 as	 standard	 linux	 service.	
The	 Network	 Function	 Store	 function	 is	 developed	 like	 a	web	 application	 running	 into	 an	
application	server;	the	chosen	server	is	Apache	TomEE,	an	all-Apache	Java	EE	6	Web	Profile	
certified	stack	built	above	the	Apache	Tomcat	Servlet	Container	

The	 NF	 Store	 application	 implements	 the	 interfaces	 to	 repository,	 database	 and	 web	
interface;	 it	 is	 also	 responsible	 for	 concurrent	 operations	 that	 are	 performed	 (CRUD	
operations).	In	addition,	it	delegates	some	traits	of	its	responsibility	(like	authentication	and	
authorization	 access)	 to	 an	 external	 AA	module.	 Security	mechanisms	 can	 be	 adopted	 for	
data	 exchange	 over	 these	 interfaces.		
The	NFS	database	is	used	to	archive	information	about	VNF	(metadata	files);	VNF	image	files	
are	saved	into	a	file	system	used	as	NFS	repository.	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
9	

3.2. Low	Level	Architecture	

3.2.1. Web	Application	

The	Web	application	architecture	is	based	on	standard	JSR-318	Enterprise	Java	Bean	(EJB)	

	
Figure	3	Web	application	Architecture	

Stateless	EJB	are	used	to	realize	the	NF	Store	front-ends	giving	to	users	the	possibility	to	use	
the	interfaces	also	when	VNF	image	operations	(upload,	download,	modify)	are	active;	this	
type	of	operations	can	require	a	lots	of	time	depending	from	the	length	of	the	image	file	so	
this	feature	prevents	to	have	the	interface	locked	and	unusable	for	many	time. 

Singleton	EJB	is	used	for	the	NF	Store	Manager	Service,	realizing	the	synchronization	center	
of	the	web	application.	When	an	operation	requires	executing	an	operation	in	exclusive	way	
this	should	be	developed	inside	this	EJB.	

3.2.2. Database	

The	 database	 layers	 is	 provided	 by	 H2,	 an	 open	 source	 Java	 SQL	 database	 with	 small	
footprint	used	in	embedded	mode	because	no	other	actors	needs	to	use	it;	the	Database	is	
saved	as	a	standard	file	into	the	Linux	file	system.	

An	H2	console	application	is	available	to	operate	on	DB	using	a	web	interface	(that	needs	to	
be	configured	on	TomEE)	mainly	for	maintenance	purposes.	

The	 database	 model	 is	 made	 using	 JPA	 and	 the	 connection	 to	 DB	 use	 standard	 JDBC	
interface	(statically	configured	on	TomEE)	giving	us	the	possibility	to	change	the	DB	without	
changing	the	web	application	code.	

The	main	entities	of	the	database	model	are:		

• VNFDescriptor	-	used	to	save	information	of	the	VNF	metadata.	The	VNF	descriptor	
is	saved	in	String	form	inside	this	entity	

• VNFFile	-	used	to	model	a	VNF	image	file	(that	is	saved	on	file	system)	giving	us	the	
possibility	to	describe	a	one-to-many	relation	from	VNF	images	and	VNF.		

The	other	entities	 in	the	database	are	used	only	for	Brokerage	interface	to	improve	search	
performances	instead	of	looking	inside	all	saved	VNF	descriptors.	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
10	

	
Figure	4.	Relational	Schemas	

	

3.2.3. NFS	service	

3.2.3.1.	 Configuration	file	

In	order	to	manage	easily	the	NF	Store,	some	bash	shell	script	have	been	developed. 

A	 configuration	 file	 nfs.conf	 is	 available	 to	 override	 the	 default	 values	 of	 the	 following	
configuration	parameters.	

Table	1		Configuration	options	of	nfs.conf	

Variable	 Default	Value	
Monitor	log	level		 Notice	

store	path		 /usr/local/store	

NFS	protocol		 https	

NFS	address		 any	address	

NFS	port		 8443	

orchestrator	protocol		 path	

orchestrator	host		 api.t-nova.eu	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
11	

orchestrator	port		 443	

orchestrator	path		 /orchestrator	

3.2.3.2.	 	nfsMonitor	script	

This	bash	script	is	responsible	to	manage	the	Apache	server	TomEE.	

Possible	Operations	are:	

• Start:	 this	 operation	 is	 used	 to	 start	 the	 server	 with	 the	 nfs	 application	 inside.		
At	the	beginning,	a	check	is	done	to	verify	that	server	is	not	running,	then	the	server	
is	 started	 after	 building	 the	 server	 configuration	 file	with	 the	 interface	 to	be	used	
(protocol/address/port)	 and	 setting	 the	 environment	 variables.		
Server	 and	 application	 are	 periodically	monitored	 to	 check	 that	 all	 the	 operations	
are	 working	 well;	 in	 case	 of	 failures,	 the	 server	 is	 stopped	 and	 restarted.	
This	operation	need	to	be	run	in	background	mode	since	the	script	doesn't	exit.  

	
Figure	5.	Starting	the	NF	Store 

• Stop:	this	operation	is	used	to	stop	the	monitor	and	the	server.	A	check	is	done	to	
see	if	monitor	is	active	and	server	is	running,	then	they	are	stopped	verifying	if	all	is	
done.	In	case	of	failure	a	try	using	SIGKILL	is	done.	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
12	

	
Figure	6.	Stopping	the	NF	Store	

• Status	 :	 using	 this	 operation	makes	 it	 possible	 to	 check	 the	 running	 status	 of	 the	
server	 and	 its	 deployed	 application.	A	 report	 is	 send	 to	 standard	output	 reporting	
the	status	of	monitor,	server,	manager	application	and	NFS	application.	
	

	
Figure	7.	Retrieving	the	status	of	the	NF	Store	

3.2.3.3.	 nfs	script	

This	 bash	 script	 gives	 the	 possibility	 to	manage	 the	 NF	 Store	 as	 a	 standard	 linux	 SysVinit	
service.	

Available	operations	are:	

start	:	start	of	nfs	service	checking	if	it	is	started	using	the	nfsMonitor	

stop	:	stop	of	nfs	service	using	the	nfsMonitor	

restart	:	restart	of	nfs	service	using	the	nfsMonitor	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
13	

• status	:	retrive	of	nfs	service	using	the	nfsMonitor	

3.3. Functional	description	

The	Dashboard	front-end	provides	the	T-DA-NFS	 interface,	used	by	software	developers	to	
publish	their	VNFs.			

	The	supported	operations	are:	

• Publication	
• Modification	
• Removal	
• List	

The	 Orchestrator	 front-end	 provides	 the	 T-OR-NFS	 interface,	 used	 mainly	 to	 recover	 the	
available	VNFs.	

The	supported	operations	are:	

• Modification	
• Retrieve	
• List	

Each	time	an	HTTP	request	is	received	from	the	TomEE	interface,	the	server	makes	a	check	
to	verify	that	the	URL	is	mapped	to	a	deployed	Web	application.	

In	 case	 of	 success,	 the	 request	 is	 sent	 to	 the	 correct	 application	 where	 the	 interface	 is	
realized	with	an	EJB.	

In	order	to	synchronize	some	parts	of	the	operations	and	in	case	of	concurrent	access	from	
users,	 an	 internal	 Singleton	 EJB	 is	 used;	 this	 is	 needed	 in	 particular	 when	 a	 long	 running	
operation	on	an	image	file	is	occurring.		

3.3.1. Publication	

The	 VNF	 is	 composed	 by	 a	 VNF	 descriptor	 and	 several	 VM	 images.	
The	VNF	descriptor	contains	the	VNF	metadata	information’s	and	then	the	list	of	VM	images	
composing	the	VNF.	

For	each	VM	image,	a	file	containing	the	MD5	image	checksum	should	be	uploaded	by	the	
Network	 Function	 developer;	 the	 name	 of	 the	 file	 should	 be	 the	 same	 of	 the	 image	with	
added	the	suffix	md5.	

Table	2	An	image	file	deployed	with	its	md5	hash	

file	type	 Name	

image	file vSBC.img		

md5	sum	file vSBC.img.md5		

		

Different	interfaces	are	available	to	publish	VNF	descriptor	and	image	files.	

Each	time	a	VM	file	or	a	descriptor	is	uploaded,	the	NFStore	checks	if	the	VNF	is	complete,	
namely	that	(1)	the	VNF	descriptor	is	available,	(2)	all	images	have	been	uploaded	with	their	
md5	 sum	 files,	 (3)	 and	 the	MD5	values	 computed	by	 the	NF	 Store	match	 the	MD5	values	
uploaded	by	the	VNF	developer.	In	case	these	conditions	are	overcome,	a	communication	to	
Orchestrator	using	the	T-OR-NFS	interface	is	sent	to	advice	that	a	new	VNF	is	available	into	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
14	

NFStore.	If	more	VNFs	share	the	same	image	file,	the	orchestrator	receives	a	notification	for	
each	published	VNF.	

	
Figure	8.	Upload	VNF	descriptor	

	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
15	

	
Figure	9.	Upload	VNF	file	

3.3.2. Modification	

Changes	 can	be	done	on	VNF	descriptor	and/or	VNF	 images.	 Like	 in	publish	operation	 the	
order	 is	 not	 important	 and	 when	 the	 upload	 of	 a	 VNF	 is	 complete,	 a	 notification	 	 to	
Orchestrator	using	the	T-OR-NFS	interface	is	sent	informing	that	the	VNF	was	changed.	

If	the	image	is	shared	by	several	VNF,	several	notifications	are	sent	to	the	Orchestrator,	one	
for	each	VNF.	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
16	

	
Figure	10.	Update	VNF	descriptor	

	
Figure	11.	Update	VNF	file	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
17	

3.3.3. Removal	

Each	time	a	file	used	by	a	VNF	is	removed,	the	VNF	is	not	usable	anymore.	In	this	case	the	NF	
Store	send	a	notification	to	the	Orchestrator	though	the	T-OR-NFS	interface	to	inform	that	a	
VNF	is	no	more	available.	

The	same	thing	happens	when	a	VNF	descriptor	is	removed.	If	more	than	one	VNFs	share	the	
same	image	file,	when	the	file	is	removed,	an	Orchestrator	notification	is	sent	for	every	VNF	
using	that	file.	

	When	a	file	is	removed,	but	it	is	required	by	a	single	VNF,	the	binary	file	is	deleted	from	the	
repository	but	his	description	into	DB	is	only	updated	with	the	file	status	to	unavailable.	

	
Figure	12.	Remove	VNF	descriptor	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
18	

	
Figure	13.	Remove	VNF	file	

3.3.4. Retrieval	

Retrieving	an	image	files	 is	the	main	operation	required	by	the	Orchestrator	and	is	needed	
to	start	a	VNF.	

The	retrieval	of	a	VNF	descriptor	is	mainly	needed	by	the	Marketplace	dashboard.	

	
Figure	14.	Get	VNF	descriptor	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
19	

	
Figure	15.	Get	VNF	file	

3.3.5. List	

This	operation	gives	to	the	Dashboard	and	the	Orchestrator	the	possibility	to	know	the	VNF	
descriptors	and	files	that	are	available	on	the	NF	Store.	

	
Figure	16.	List	VNF	descriptors	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
20	

	
Figure	17.	List	VNF	files	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
21	

4. INTERFACES 

The	 NF	 Store	 provides	 APIs	 for	 the	 different	 T-NOVA	 modules	 to	 interact	 with	 it.	 Three	
interfaces	have	been	defined:	

• T-DA-NFS	 -	Dashboard	 Interface:	The	 interface	between	the	dashboard	and	the	NF	
Store	has	the	single	functionality	of	providing	the	API	for	the	Function	Providers	(FP)	
to	insert	their	VNFs	offerings	and	associated	metadata	in	the	Function	Store.	Each	FP	
introduces	 their	 Functions	using	 the	 Function	Definition	 feature	 in	 the	Dashboard.	
From	that,	a	VNF	Descriptor	 is	created	and	the	Function	images	are	uploaded	onto	
the	Function	Store	by	means	of	the	previously	mentioned	API.	

• T-OR-NFS	 -	 Orchestrator	 Interface:	 This	 interface	 gives	 to	 Orchestrator,	 when	 the	
Function	is	loaded	in	the	NF	Store,	the	possibility	to	perform	VNFs	checks	and	label	
the	Function	as	"Available".	A	second	use	of	 this	 interface	 is	 to	extract	 the	 images	
and	the	metadata	of	the	selected	VNFs	once	they	have	been	purchased	by	a	Service	
Provider	and	are	ready	to	be	deployed.	

• T-BR-NFS	 -	 Brokerage	 Interface:	 The	 interface	 between	 the	 brokerage	 and	 the	 NF	
Store	 has	 the	 functionality	 of	 providing	 the	 API	 for	 crawls	 the	 list	 of	 VNFs	 and	
performs	 trading	 mechanisms	 to	 be	 able	 to	 offer	 to	 SP	 the	 best	 possible	 set	 of	
options	given	the	following	parameters:	
1. availability=true	
2. trade=true	
3. Type,	billing	model	and	price	

For	a	deeper	brokering,	we	should	also	look	inside	the	deployment	flavor:	

1. Assurance	 parameters.	 (Those	 include	 the	monitoring	 parameters,	 thresholds,	
violations	 and	 penalties.	 For	 more	 details	 on	 those	 parameters,	 please	 check	
deliverable	D6.2)	

2. Constituent	VDU.	

	

The	expected	response	from	the	VNFs	matching	the	search	would	include:	

• 		VNF	ID	
• 		Provider	name	
• 		Description		
• 		Billing	model	
• 		Key-flavor/Assurance	parameters	
• 		Constituent	VDU	

The	interfaces	exposed	by	the	NFS	web	application	deployed	into	Apache	TomEE	server	give	
the	possibility	to	operate	on	VNF	image	files	and	VNF	metadata	descriptor.	

4.1. Files	Interface	

4.1.1. Upload	file	to	NFStore 

This	method	allows	uploading	a	file	to	NF	Store.	

The	 file	 should	 be	 inserted	 into	 HTML	 body	 as	 parts	 of	 a	multipart/form-data	 Content.	
The	 Content-Type	 field	 of	 the	 part	 should	 be	 configured	 to	 application/octet-stream.	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
22	

The	 Content-Disposition	 field	 of	 the	 part	 should	 be	 configured	 setting	 name	 to	 file	 and	
filename	with	the	name	of	file	to	upload.	

The	response	header	Location	field	reports	the	URL	to	be	used	for	the	other	request	about	
this	object.	

The	response	body	returns	the	name	of	the	file	and	the	 Id	 list	of	VNF	Descriptors	that	use	
the	files.	

Method	 POST	

Endpoint	 /NFS/files	

Parameters	 Name	 Type		 Description		

   
	

Sample	Request	 URL	 https://83.212.108.105:8443/NFS/files	

Body	 .... 
Content-Type: multipart/form-data; 

boundary=--uuid:2e67c5cf-6c59-4011-ace3-
a9d420592392 

 
--uuid:2e67c5cf-6c59-4011-ace3-a9d420592392  

Content-Type: application/octet-stream 
Content-Transfer-Encoding: binary  
Content-Disposition: form-data; 

name="file"; filename="file1.img"  
 

1 22 333 4444 55555 666666 7777777 88888888 
999999999 0000000000 

--uuid:2e67c5cf-6c59-4011-ace3-
a9d420592392-- 

 

Sample	response	 Status	 Response	body	
201 CREATED { "name": "file1.img",  

"vnfd_id": [104,368]} 
 

Possible	errors	 Code	 Description	

400 Bad request 
500 Internal Server Error 

 

	

4.1.2. Download	file	from	NFStore	

This	method	allows	getting	the	file	specified	into	request	from	NF	Store.	

The	file	is	returned	in	the	HTML	body	as	parts	of	a	multipart/form-data	Content.	

The	Content-Type	field	is	set	configured	to	application/octet-stream.	

The	Content-Disposition	field	of	the	part	is	configured	setting	name	to	file	and	filename	with	
the	name	of	file.	

Response	503	(Service	Unavailable)	is	returned	when	a	modify	operation	on	the	same	file	is	
already	in	progress.	

	

Method	 GET	

Endpoint	 /NFS/files/<fileName>	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
23	

Parameters	 Name	 Type		 Description		

fileName string	 Name of the file to 
download.	

	

Sample	
Request	

URL	 Body	

https://83.212.108.105:8443/NFS/files/file1.img  
 

Sample	
response	

Status	 Response	body	
200 OK --uuid:2e67c5cf-6c59-4011-ace3-a9d420592392 

Content-Type: application/octet-stream 
Content-Transfer-Encoding: binary 

Content-Disposition: form-data; name="file"; 
filename="file1.img"  

 
1 22 333 4444 55555 666666 7777777 88888888 

999999999 0000000000 
--uuid:2e67c5cf-6c59-4011-ace3-a9d420592392-

- 
 

Possible	errors	 Code		 Description		

400  Bad Request  
404  Not Found  
500  Internal Server Error  
503  Service Unavailable 

 

	

4.1.3. Update	NFStore	file	

This	method	allows	updating	a	file	already	uploaded	to	NF	Store.	

The	file	should	be	inserted	into	HTML	body	as	parts	of	a	multipart/form-data	Content.	

The	Content-Type	field	of	the	part	should	be	configured	to	application/octet-stream.	

The	Content-Disposition	field	of	the	part	should	be	configured	setting	name	to	file.	

The	response	returns	the	name	of	the	file	and	the	Id	list	of	VNF	Descriptors	that	use	the	files.	

Response	 503	 (Service	 Unavailable)	 is	 returned	 when	 another	 operation	 on	 same	 file	 is	
already	in	progress.	

	

Method	 PUT	

Endpoint	 /NFS/files/<fileName>	

Parameters	 Name	 Type		 Description		

fileName string	 Name of the file to 
update.	

	

Sample	
Request	

URL	 https://83.212.108.105:8443/NFS/files/file1.img	

Body	 .... 
Content-Type: multipart/form-data; boundary=--

uuid:2e67c5cf-6c59-4011-ace3-a9d420592392 
 

--uuid:2e67c5cf-6c59-4011-ace3-a9d420592392  
Content-Type: application/octet-stream 

Content-Transfer-Encoding: binary  
Content-Disposition: form-data; name="file"; 



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
24	

filename="file1.img"  
 

1 22 333 4444 55555 666666 7777777 88888888 
999999999 0000000000 

--uuid:2e67c5cf-6c59-4011-ace3-a9d420592392-- 
 

Sample	
response	

Status	 Response	body	
200 OK { 

  "name": "file1.img", 
  "vnfd_id": [104,368] 

} 
 

 

Possible	errors	 Code		 Description		

400  Bad Request  
404  Not Found  
500  Internal Server Error  
503  Service Unavailable 

 

	

4.1.4. Delete	NFStore	files	

4.1.4.1.	 Delete	all	NFStore	files	

This	method	allows	deleting	all	files	available	into	the	NF	Store.	

Method	 DELETE	

Endpoint	 /NFS/files	

Parameters	 Name	 Type		 Description		

 	 	
	

Sample	
Request	

URL	 https://83.212.108.105:8443/NFS/files	

Body	  
 

Sample	
response	

Status	 Response	body	
204 No 
Content 

 

 

Possible	errors	 Code		 Description		

500  Internal Server Error  
 

4.1.4.2.	 Delete	NFStore	file	

This	method	allows	deleting	from	NF	Store	the	file	specified	into	request.	

Response	503	(Service	Unavailable)	is	returned	when	another	operation	on	the	same	file	is	
already	in	progress.	

Method	 DELETE	

Endpoint	 /NFS/files/<fileName>	

Parameters	 Name	 Type		 Description		

fileName  string  Name of the file to 
delete.  

	

Sample	 URL	 https://83.212.108.105:8443/NFS/files/file1.img	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
25	

Request	 Body	  
 

Sample	
response	

Status	 Response	body	
204 No 
Content 

 

 

Possible	errors	 Code		 Description		

400  Bad Request  

404  Not Found  
500  Internal Server Error 

 

4.1.5. Get	NFStore	files	list	

This	method	allows	retrieving	the	list	of	all	files	available	into	NF	Store.	

The	response	report	for	each	file:	

• file	name	
• VNF	Descriptor	Identifiers	of	VNFs	that	use	the	file	

Method	 GET	

Endpoint	 /NFS/files	

Parameters	 Name	 Type		 Description		

fileName string	 Name of the 
file to 

download.	
	

Sample	Request	 URL	 Body	

https://83.212.108.105:8443/NFS/files  
 

Sample	response	 Status	 Response	body	
200 OK { 

      "files": [ 
           { 

               "name": "file1.img", 
               "vnfd_Id": [104] 

           }, 
           { 

               "name": "file2.img", 
               "vnfd_Id": [104,368] 

           } 
      ] 

} 
 

Possible	errors	 Code		 Description		

500  Internal Server Error  
 

	

4.2. VNF	Descriptors	interface	

4.2.1. Add	VNF	Descriptor	to	NFStore 

This	method	allows	adding	one	VNF	descriptor	to	NF	Store.	

The	descriptor	should	be	inserted	in	json	format	into	the	request.	

The	Content-Type	field	of	the	part	should	be	configured	to	application/json.	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
26	

Remember	 that	 the	 id	 field	 of	 VNF	 descriptor	 should	 not	 be	 present	 because	 the	 value	
should	be	inserted	by	NFStore.	

The	response	return	the	id	of	VNF	descriptor	inserted.	

Method	 POST	

Endpoint	 /NFS/vnfds	

Parameters	 Name	 Type		 Description		

   
	

Sample	Request	 URL	 Body	

https://83.212.108.105:8443/NFS/vnfds  
 

Sample	response	 Status	 Response	body	
201 CREATED {  "vnfd_id":3901} 

 

Possible	errors	 Code	 Description	

400 Bad request 
500 Internal Server Error 

 

	

4.2.2. Get	NFStore	VNF	Descriptor	

This	method	allows	getting	from	NFStore	the	VNF	descriptor	with	id	specified	into	request.	

The	descriptor	is	returned	in	json	form	into	HTML	body.	

The	Content-Type	field	is	set	to	application/json.	

Method	 GET	

Endpoint	 /NFS/vnfds/<vnfd_id>	

Parameters	 Name	 Type		 Description		

vnfd_id  integer  
Identifier of 

VNF descriptor. 
	

Sample	Request	 URL	 Body	

https://83.212.108.105:8443/NFS/vnfds/3901  
 

Sample	response	 Status	 Response	body	
200 OK { 

  "id": 3901 
  "descriptor_version": "1.0", 

  "version": "1.0", 
  "Vdu": [ 

     { 
        "id": "VDU-1", 

        "vm_image": "file1.img" 
     }, 

           { 
        "id": "VDU-2", 

        "vm_image": "file2.img" 
     } 
  ], 

  ...... 
} 

 

Possible	errors	 Code		 Description		



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
27	

400  Bad Request  

404  Not Found  
500  Internal Server Error 

 

	

4.2.3. Modify	NFStore	VNF	Descriptor	

This	method	allows	modifying	one	VNF	descriptor	already	available	into	NF	Store.	

The	new	descriptor	should	be	inserted	in	json	format	into	request.	

The	Content-Type	field	of	the	part	should	be	configured	to	application/json.	

Remember	 that	 the	 id	 field	 of	 VNF	 descriptor	 should	 be	 present	 and	 should	 be	 the	 same	
specified	into	request	URL.	

The	response	return	the	id	of	VNF	descriptor	modified.	

Method	 PUT	

Endpoint	 /NFS/vnfds	

Parameters	 Name	 Type		 Description		

   
	

Sample	Request	 URL	 Body	

https://83.212.108.105:8443/NFS/files/3901  
 

Sample	response	 Status	 Response	body	
200 OK { 

  "vnfd_id":3901 
} 

 

Possible	errors	 Code		 Description		

400  Bad Request  

404  Not Found  
500  Internal Server Error 

 

4.2.4. Delete	NFStore	VNF	Descriptor	

4.2.4.1.	 Delete	all	VNF	Descriptors	

This	method	 allows	deleting	 all	 VNF	Descriptors	 from	NF	 Store	with	 all	 files	 specified	 into	
Vdus	fields.	

Method	 DELETE	

Endpoint	 /NFS/vnfds	

Parameters	 Name	 Type		 Description		

   
	

Sample	
Request	

URL	 https://83.212.108.105:8443/NFS/files	

Body	  
 

Sample	
response	

Status	 Response	body	
204 No 
Content 

 

 



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
28	

Possible	errors	 Code		 Description		

500  Internal Server Error 
 

4.2.4.2.	 Delete	NFStore	VNF	Descriptor	

This	method	allows	deleting	from	the	NF	Store	the	VNF	Descriptor	specified	into	the	request	
and	all	files	specified	into	Vdus	fields.	

The	file	used	by	other	VNF	descriptors	will	not	be	removed.	

Method	 DELETE	

Endpoint	 /NFS/vnfds/<vnfd_id>	

Parameters	 Name	 Type		 Description		

vnfd_id  integer  Identifier of VNF 
descriptor. 

	

Sample	
Request	

URL	 https://83.212.108.105:8443/NFS/files/1309	

Body	  
 

Sample	
response	

Status	 Response	body	
204 No 
Content 

 

 

Possible	errors	 Code		 Description		

400  Bad Request  

404  Not Found  
500  Internal Server Error 

 

4.2.5. Get	NFStore	VNF	Descriptor	list	

This	method	allows	retrieving	the	list	of	all	VNF	descriptors	available	into	the	NF	Store.	

Method	 GET	

Endpoint	 /NFS/vnfds	

Parameters	 Name	 Type		 Description		

   
	

Sample	Request	 URL	 Body	

https://83.212.108.105:8443/NFS/vnfds  
 

Sample	response	 Status	 Response	body	
200 OK { 

      "vnfd_id": [ 3901, 1309 ] 
} 

 

Possible	errors	 Code		 Description		

500  Internal Server Error 
 

4.3. Management	Interface	

This	interface	is	used	to	manage	the	NF	Store. 

The	 deployment	 of	 the	 	 NF	 Store	 installs	 a	 standard	 linux	 SysVinit	 service	 called	 nfs	 that	
enables	users	to	perform	the	following	operations:	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
29	

• Start	NF	Store	

								Shell	command:	service	nfs	start	

• Stop	NF	Store	

								Shell	command:	service	nfs	stop	

• Restart	NF	Store	

								Shell	command:	service	nfs	restart	

• Get	NF	Store	status	

								Shell	command:	service	nfs	status	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
30	

5. TECHNOLOGIES	

The	NF	Store	implementation	is	made	with	a	java	web	service	running	on	Tomcat	application	
server.	

Apache	 Tomcat	 is	 an	 open	 source	 software	 implementation	 of	 the	 Java	 Servlet	 and	 Java	
Server	Pages	 technologies;	 for	our	 implementation,	we	use	TomEE,	which	bundles	Tomcat	
version	7	with	along	with	enterprise	dependencies	like	CDI,	EJB,	JPA,	JTA,	Bean	Validation.	

In	our	case,	we	use	the	TomEE	version	+	that	contains	also	the	JAX-RS	packages	needed	for	
implementing	the	required	REST	interfaces.	

Database	data	is	described	using	JPA	(Java	Persistence	API)	and	the	interconnection	with	DB	
using	JDBC	API,	giving	us	the	possibility	to	change	it	without	requiring	changes	in	the	source	
code.	

The	used	database	 is	H2,	a	pure	Java	SQL	database	with	small	 footprint	 that	matches	very	
well	with	java	applications,	used	in	this	project	in	embedded	mode	as	the	application	is	the	
only	resource	that	needs	to	access	to	DB.	

Data	 exchange	on	 interfaces	 T-DA-NFS	 and	 T-OR-NFS	 are	 implemented	by	 REST	 primitives	
using	 the	 standard	 JSON	 (JavaScript	 Object	 Notation)	 format.	 JSON	 is	 a	 lightweight	 data-
interchange	format	easy	for	humans	to	read	and	write	and	also	easy	for	machines	to	parse	
and	generate	a	text	format	that	is	completely	language	independent	and	based	on	a	subset	
of	the	JavaScript	Programming	Language.	

The	 Java	 Virtual	 Machine	 is	 the	 1.8	 version	 and	 the	 development	 is	 made	 using	 Eclipse	
platform	(Luna	version).	

The	 build	 procedure	 use	 Apache	 ANT,	 a	 Java	 library	 and	 command-line	 tool	 for	 drive	
processes	described	in	build	files.	

The	 final	 production	 is	 a	 RPM	 file	 generated	 using	 redline,	 a	 pure	 Java	 library	 for	
manipulating	RPM	Package	Manager	packages.	

The	 deployment	 of	 RPM	 on	 target	 installs	 a	 standard	 service	 called	 nfs	 that	 can	 also	 be	
activated	at	server	startup	adding	it	to	appropriate	run	level.		



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
31	

6. DIMENSIONING	AND	PERFORMANCE	

Dimensioning	and	performances	tasks	will	be	carried	out	when	integrating	with	Marketplace	
and	Orchestrator,	please	refer	to	D6.3	for	more	details.	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
32	

7. CONCLUSIONS	AND	FUTURE	WORK	

7.1. Conclusions	

The	Network	Function	store	plays	a	crucial	 role	 in	delivering	VNFs	 in	a	timely	 fashion,	VNF	
images	to	the	Orchestrator,	and	in	providing	an	API	for	network	developers	to	publish	their	
work	and	also	an	API	for	Brokerage	functions.	

By	 selecting	 a	 standard	 JEE	 implementation	 to	 support	 a	 simple	 but	 robust	 REST	 API,	 we	
mitigated	the	far	too	common	integration	issues	we	may	face	when	interfacing	with	the	rest	
of	the	system.	

7.2. Future	work	

In	 this	 deliverable,	 we	 reported	 on	 the	 current	 implementation	 of	 the	 network	 function	
store.	As	integration	tasks	will	be	carried	out	when	other	modules	are	ready,	we	decided	to	
postpone	the	performance	measurements	until	the	interfaces	are	mature	enough.		

	

	



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
33	

8. LIST	OF	ACRONYMS	

	

	

	

Acronym	 Explanation	

[API] Application	Program	Interface		

[CDI]	 Contexts	and	Dependency	Injection		

[EJB]	 Enterprise	JavaBeans		

[FIQL]	 Feed	Item	Query	Language		

[IDE]	 Integrated	Development	Environment		

[JDBC]	 Java	Database	Connectivity		

[JPA]	 Java	Persistence	API		

[JSON]	 JavaScript	Object	Notation		



T-NOVA	|	Deliverable	D5.1	 	 Network	Function	Store	

©	T-NOVA	Consortium	
34	

9. REFERENCES	

		

	

[ANT] Java	library	to	drive	processes	 http://ant.apache.org/		

[CDI]	 Contexts	and	Dependency	Injection	for	Java	EE	 http://www.cdi-spec.org		

[CXF]		 Apache	CXF	services	framework	 http://cxf.apache.org		

[D2.21]	 T-NOVA:	 Overall	 System	 Architecture	 and	
Interfaces	 	

[D2.41]	 Specification	of	the	Network	Function	framework	
and	T-NOVA	Marketplace	 	

[Eclipse]	 Java	IDE	 https://eclipse.org/		

[H2]	 H2	database	 http://www.h2database.co
m/html/main.html		

[EJB]	 Enterprise	JavaBeans	
http://www.oracle.com/tec
hnetwork/java/javaee/ejb/i
ndex.html		

[JAX-RS]	 Java	API	for	RESTful	Services	 https://jax-rs-spec.java.net		

[JAVA	EE]	 Java	Enterprise	Edition	
http://www.oracle.com/tec
hnetwork/java/javaee/over
view/index.html		

[JDBC]	 Java	database	connectivity	technology	
http://www.oracle.com/tec
hnetwork/java/javase/jDBc/
index.htm		

[JPA]	 Java	Persistence	API	

http://www.oracle.com/tec
hnetwork/java/javaee/tech
/persistence-jsp-
140049.html		

[OpenJPA
]	 Apache	openJPA	 http://openjpa.apache.org/		

[Redline]	 Java	RPM	Package	Manager	packages	 http://redline-
rpm.org/index.html		

[Servlet]	 Java	Servlet	
http://www.oracle.com/tec
hnetwork/java/index-jsp-
135475.html		

[Tomcat]	 Tomcat	application	server	 http://tomcat.apache.org/		

[TomEE]	 Tomcat	Enterprise	Edition	 http://tomee.apache.org/a
pache-tomee.html	


