
T-NOVA | Deliverable D2.1 System Use Cases and Requirements

© T-NOVA Consortium

1

 NETWORK FUNCTIONS AS-A-SERVICE

OVER VIRTUALISED INFRASTRUCTURES
GRANT AGREEMENT NO.: 619520

Deliverable D6.4

T-NOVA SLA & Billing

Editor Aurora Ramos (ATOS)

Contributors Aurora Ramos, Javier Melián (ATOS), Evangelos Markakis,
George Alexiou (ATOS), Piyush Harsh, Manuel Pérez (ZHAW)

Version 1.0

Date December 30th, 2015

Distribution PUBLIC (PU)

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 2

Executive Summary

This document reports the results of the activities carried out in T-NOVA EU-FP7
Project “Functions as-a-Service over Virtualised Infrastructures” by Task 6.4 ”SLAs and
billing”. Based on previous specification work in the project, the current document is
delivered at the same time that the T-NOVA SLA and billing prototypes are finished
(http://github.com/T-NOVA).

This report includes a summary of the main on-going related activities in the SOTA,
providing a brief update from the analysis performed in the specification phase one
year ago, describes the key points of T-NOVA SLA and billing frameworks, and details
their different modules architecture, documentation related to their implementation
(UML diagrams) and their integration with the rest of T-NOVA components (including
APIs definitions). Also the results of functional verifications have been included as
well as the report on requirements fulfilment.

The main T-NOVA subsystem interfacing SLA and billing frameworks is T-NOVA
Orchestrator which it is expected to be finalized by end of March’2015. For this
reason, final integration tests with the orchestrator will be done by that date, and
therefore possible refinements may be needed in the SLA and billing
implementations as well as some minor updates in the current document.

The T-NOVA SLA and billing frameworks correspond to the two commercial
interactions defined in T-NOVA Marketplace:

o The Service Provider (SP) acquires Virtual Network Functions (VNFs) from the
Function Providers (FPs); SLA between FPs and SP.

o The Customer acquires Network Services (NSs) provided by Service Providers
based on the combination of VNFs previously purchased. SLA between SP and
the Customer.

ETSI NFV requirements for SLA have been considered as input for T-NOVA SLA
framework, though not a proper complete SLA business framework has been
specified by ETSI so far. TMForum gives insights about metrics and SLA relations in
cloud environment that has also been taken into account.

Furthermore, T-NOVA SLA framework has been developed being compliance with
WS-agreement specification, as it has been identified as the most complete and
extended specification for SLA procedure. All the surveyed research projects in cloud
environment have followed this WS-Agreement though there is no research project in
the state of the art providing SLA framework for NFV ecosystem as T-NOVA does.

After an exploratory work considering different options for billing mechanisms it has
been concluded that Pay-As-You-Go is the most generic and suitable model to bill
VNFs and Network Services in T-NOVA including an innovative Revenue Sharing
model between Service Provider and Function Providers. FPs will benefit from the
pay-as-you-earn model, an extension of pay-as-you-go in which the VNF provider
will pay a percentage of the revenue received.

The T-NOVA billing framework is composed by 2 modules:

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 3

o Accounting module: it keeps a record of all the movements in the system that
may have a potential impact in the billing.

o Billing module: it emits the bills based on the accounting information. The
billing module being used in T-NOVA extends the generic rating-charging-
billing (RCB) framework Cyclops, and whose functionalities have been
extended to support the T-NOVA requirements.

All the components in the T-NOVA Marketplace (including SLA, accounting and
billing) have been developed with a Software Oriented Architecture based on
microservices, in which each Marketplace component has been developed separately
and communicates with the others by means of RESTful APIs. This provides flexibility
and scalability to the T-NOVA Marketplace in case further functionalities may want to
be added in the future.

For the integration of all the different components in the Marketplace, Docker
Compose has been selected; each microservice is placed in a different container, and
they are integrated by means of Docker Compose file to coordinate the configuration
of all the micro-services.

	

	
	

	
	
	

	
	
	

	
	

	
	
	

	
	
	

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 4

Table of Contents

1. INTRODUCTION .. 8	

1.1. OBJECTIVES AND SCOPE .. 8	
1.2. T-NOVA COMMERCIAL FRAMEWORK OVERVIEW ... 8	
1.3. RELATION TO T-NOVA MARKETPLACE ARCHITECTURE ... 9	

1.3.1. T-NOVA Marketplace implementation ... 10	
1.4. DOCUMENT STRUCTURE .. 10	

2. T-NOVA SERVICE LEVEL AGREEMENTS (SLAS) .. 11	

2.1. STATE OF THE ART OVERVIEW FOR T-NOVA SLA .. 11	
2.1.1. Other research projects ... 11	
2.1.2. Standardization bodies ... 11	

2.2. T-NOVA SLA FRAMEWORK DESIGN ... 15	
2.2.2. SLA between SP and FP: VNF SLA ... 16	
2.2.3. SLA between SP and customer ... 17	

2.3. SLA MODULE ARCHITECTURE ... 20	
2.4. T-NOVA SLA WORKFLOW .. 21	
2.5. IMPLEMENTATION .. 24	

2.5.1. WS-agreement ... 24	
2.5.2. Implementation guidelines .. 25	
2.5.3. Enforcement (assessment) .. 28	
2.5.4. License .. 31	

2.6. INTEGRATION .. 32	
2.6.1. SLA module API definition ... 32	
2.6.2. Calls to other APIs .. 36	

3. T-NOVA BILLING AND ACCOUNTING .. 38	

3.1. STATE OF THE ART ANALYSIS FOR BILLING IN T-NOVA .. 38	
3.2. T-NOVA BILLING FRAMEWORK DESIGN ... 38	

3.2.1. Billing for VNFs .. 38	
3.2.2. Billing for Network Services ... 40	
3.2.3. Workflow .. 40	

3.3. ARCHITECTURE .. 42	
3.3.1. Overview .. 42	
3.3.2. Accounting .. 43	
3.3.3. Billing .. 44	

3.4. IMPLEMENTATION .. 47	
3.4.1. Overview .. 47	
3.4.2. Accounting .. 47	
3.4.3. Billing .. 48	

3.5. ACCOUNTING MODULE INTEGRATION .. 51	
3.5.1. Accounting module API definition .. 51	
3.5.2. Calls to other APIs .. 64	

3.6. BILLING MODULE INTEGRATION ... 64	
3.6.1. Billing module API definition .. 65	

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 5

3.6.2. Calls to other APIs .. 70	

4. VALIDATION .. 71	

4.1. FUNCTIONAL VERIFICATION .. 71	
4.2. REQUIREMENTS FULFILMENT ... 73	

4.2.1. SLA management module requirements .. 73	
4.2.2. Accounting module requirements ... 74	
4.2.3. Billing module requirements ... 75	

5. CONCLUSIONS .. 76	

5.1. FUTURE WORK .. 77	
5.1.1. 5G projects ... 78	

5.2. CONTRIBUTIONS TO STANDARDS ... 78	

6. ANNEXES .. 79	

6.1. WS-AGREEMENT .. 79	
6.1.1. Context ... 81	
6.1.2. Service description terms (SDT) .. 82	
6.1.3. Service references (SR) ... 82	
6.1.4. Service properties (SP) ... 83	
6.1.5. Guarantee terms (GT) .. 84	
6.1.6. Service Level Objective (SLO) .. 85	
6.1.7. Business Values .. 85	

6.2. T-NOVA SLA TEMPLATE EXAMPLE (JSON) .. 86	
6.3. T-NOVA SLA AGREEMENT EXAMPLE (JSON) .. 88	

7. REFERENCES .. 91	

8. GLOSSARY .. 93	

9. LIST OF ACRONYMS ... 95	

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 6

Index of Figures

Figure 1-1 Business T-NOVA stakeholders relationships [3] .. 9	
Figure 1-2 T-NOVA Marketplace architecture [1] ... 9	
Figure 2-1 SLA lifecycle ... 16	
Figure 2-2 SLA management module in the Marketplace architecture 20	
Figure 2-3 SLA management module internal architecture .. 20	
Figure 2-4 SLA workflow sequence diagram .. 22	
Figure 2-5 Basic structure of an SLA agreement ... 25	
Figure 3-1 Accounting and billing workflow sequence diagram .. 41	
Figure 3-2 Accounting and billing modules in T-NOVA architecture 42	
Figure 3-3 Accounting module interfaces .. 43	
Figure 3-4 Cyclops micro-services architecture ... 45	
Figure 3-5 UDR micro-service architecture ... 45	
Figure 3-6 RC micro-service architecture ... 46	
Figure 3-7 Billing micro-service architecture .. 46	
Figure 3-8 UML class diagram (split view) for UDR micro-service 49	
Figure 3-9 UML class diagram for rc micro-service .. 50	
Figure 3-10 UML class diagram for billing micro-service .. 50	
Figure 3-11 Cyclops and T-Nova Marketplace Module Interactions 65	

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 7

Index of Tables

Table 2-1 Summary of ETSI NFV service quality metrics [11] ... 12	
Table 2-2 Standards for E2E Cloud SLA Management [13] ... 14	
Table 2-3 Metrics collected by the VIM monitoring manager [26] 18	
Table 2-4 Generic Networking service deployment flavours .. 19	
Table 2-5 SLA 	 API operation to register a provider .. 33	
Table 2-6 SLA API operation to create a new template .. 33	
Table 2-7 SLA API operation to update the template identified by TemplateId 34	
Table 2-8 SLA API operation to retrieve a template identified by templateId 34	
Table 2-9 SLA API operation to retrieve an agreement identified by agreementId 34	
Table 2-10 SLA API operation to create a new agreement .. 35	
Table 2-11 SLA operation to start or stop an enforcement job .. 36	
Table 2-12 SLA API operation to retrieve information from a penalty 36	
Table 3-1 Accounting module interfaces ... 44	
Table 3-2 Accounting module information model ... 48	
Table 3-3 Accounting API operation to get details about the client's billing model 52	
Table 3-4 Accounting API operation to get the list of all active services for a user 53	
Table 3-5 Accounting API operation to get the list of all VNFs purchased by a
particular provider ... 54	
Table 3-6 Accounting API operatio to get details of the revenue sharing model
between SP and FP for the given VNF instance ... 55	
Table 3-7 Accounting API operation to get the list of all sla violations for a service ... 56	
Table 3-8 Accounting API operation to get the list of all sla-violations for a VNF 57	
Table 3-9 Accounting API to get the list of all active services that use the given VNF 58	
Table 3-10 Accounting API to get the list of all entries in the Accounting system or a
single one if the parameter accountId is present .. 59	
Table 3-11 Accounting API operation to create a new entry ... 60	
Table 3-12 Accounting API operation to update an existing entry 60	
Table 3-13 Accounting API operation to delete an existing accounting entry 61	
Table 3-14 Accounting API operation to update the status of a service given its
instanceId and the new status .. 61	
Table 3-15 Accounting API operation to retrieve the list of all running VNFs the user
(service provider) is using ... 64	
Table 3-16 Billing API operation for getting user’s data .. 66	
Table 3-17 Billing API operation to query for particular resource / service id 67	
Table 3-18 Billing API operation to generate bill for a particular customer 68	
Table 3-19 Billing API operation to retrieves the earnings of a provider in between
specified dates for all the instances .. 69	
Table 3-20 Billing API operation to retrieves the bill of a specific user in between
specified dates for all the instances .. 70	
Table 4-1 SLA, accounting and billing verification ... 73	
Table 4-2 SLA requirements fulfilment .. 74	
Table 4-3 Accounting requirements fulfilment .. 75	
Table 4-4 Billing requirements fulfilment ... 75	

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 8

1. INTRODUCTION

1.1. Objectives and Scope

This deliverable presents the activities and results from Task 6.4, whose objective is
the implementation of the T-NOVA components that constitute the SLA (Service
Level Agreement) and billing framework, including the definition of:

• Mechanisms for SLAs that can support the formal definition and management
of the relationships between the T-NOVA stakeholders – SLA template,
negotiation, agreement.

• SLA management information for later billing and conciliation, depending on
the terms and conditions gathered in the SLA and on whether this SLA has
been met by all parties or not.

• Management of the monitoring information from the orchestrator whether
the committed SLA has been met or not, taking the necessary actions, which
can lead to simple reports or additional credits or debits in the billing account
for this customer.

• Most suitable billing mechanisms for network services and VNFs in T-NOVA,
including the T-NOVA accounting procedure in order to store all the
information that will be needed in T-NOVA for billing purposes.

The current work relies on previous related specification and research phases in the
project, including requirements elicitation, that were explained in [1] [2]. The first
release of SLA, accounting and billing components is due by the end of December
2015, though it is expected that after the integration work between the marketplace
and the rest of T-NOVA subsystems, a.k.a, orchestrator and function store, the SLA,
accounting and billing modules could be refined based on the overall integration
feedback. This will be reported in the final version of the current report that will be
due by end of June 2016.

1.2. T-NOVA commercial framework overview

The T-NOVA Marketplace generic business scenario, depicted in Figure 1-1, reflects
the two main commercial relationship that are in T-NOVA: one between the Service
Provider (SPs) and Function Providers (FPs) to acquire standalone VNFs to compose a
Network Service (NSs) and the second one between the SP and the Customer who
acquire NSs.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 9

Figure 1-1 Business T-NOVA stakeholders relationships [3]

The Function Providers (FPs) that want to sell their VNFs through the T-NOVA
Marketplace will enter the system providing their VNFs information: VNF metadata
including technical constraints, SLAs, price, etc.

The Service Provider (SP) may then enter the system, acquire VNFs and bundle them
into new NSs, including the service description, the SLA specification and its pricing.
These offerings will then be exposed in the T-NOVA marketplace to the Customer.
Different SLA levels and prices imply different NSs.

The Customer will be able to search for the available NS, selecting the one that better
suits him/her. When the customer selects an offering the SLA agreement procedure
will be initiated: between customer and SP and consequently between SP and FPs.

1.3. Relation to T-NOVA Marketplace architecture

The T-NOVA Marketplace has been designed as a distributed platform placed on top
of the overall T-NOVA architecture being in charge of managing all business
relationships among the T-NOVA stakeholders [1]. Figure 1-2 highlights the location
and interfaces on SLA, accounting and billing modules which are the components
within the scope of the current report and that will be detailed in the following
sections.

Figure 1-2 T-NOVA Marketplace architecture [1]

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 10

1.3.1. T-NOVA Marketplace implementation

As explained in [2], in order to enhance the T-NOVA Marketplace with the modularity
specified in previous work [3], the T-NOVA Marketplace implementation is based on a
micro services software architecture [2]. This kind of architecture provides the
necessary tools for each marketplace module to run separately as a standalone
service. Hence, each module can manage its own database (if needed) or share a
database with other module(s) and be scaled, deployed and evolved independently.

Furthermore, by using this software architecture model, each component can be
implemented separately in any technology (e.g. Java, Python, etc.) and can be more
easily integrated in the overall system, which is the Marketplace.

The Marketplace’s software architecture is also REST [4]-based, a set of architectural
principles by which it is possible to design web services that focus on a system's
resources, including how resource states are addressed and transferred over HTTP by
a wide range of clients written in different languages. Therefore SLA, accounting and
billing modules implementations follow this approach. Details on SLA, accounting
and billing modules implementation and their request methods, following these
approaches, are explained in this document.

1.4. Document structure

This document is structured as follows:

Section 2 is devoted to SLA while section 3 is devoted to accounting and billing. For
each of these sections the same internal structure has been followed: firstly an
overview about the main outputs of the survey done in T-NOVA Marketplace
specification phase [2], including an update on the activities by the main identified
relevant bodies during the last year. Then the details of the T-NOVA Marketplace SLA
and accounting and billing frameworks are explained respectively. Next subsection is
devoted to depicting the architecture the applicable modules, and finally the insights
about their implementation and integration are explained including the collection of
APIs definitions. Section 4 contains the results of the functional verification tests that
have been performed for the implemented modules, as well as the report on the
fulfilment of the requirements that were gather in the specification phase. The
conclusions gathered from the contents of this document are provided in section 5.
Annexes include insights of the WS-Agreement specification which has been followed
to implement T-NOVA SLA module, as well as examples of SLA templates and
agreements in JSON format.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 11

2. T-NOVA SERVICE LEVEL AGREEMENTS (SLAS)

Service Level Agreements (SLAs) represent the contractual relationship between a
service consumer and a service provider in order to provide a mechanism to increase
trust in providers by encoding dependability commitments and ensuring the level of
Quality of Service is maintained to an acceptable level. This section summaries firstly
the SLA survey done applicable to T-NOVA, then the T-NOVA SLA framework is
explained, and finally how the SLA management framework is implemented as part of
the T-NOVA system.

In T-NOVA we are dealing with three different stakeholders: Customer, SP and FP that
relate as shown in Figure 1-1, therefore we will have two different kinds of SLA
contracts: between the FP and the SP and between the SP and the Customer.

2.1. State of the Art overview for T-NOVA SLA

This sub-section covers the main outputs on the surveyed performed in previous
work in T-NOVA project [2], as well as an update on the activities of the more
relevant initiatives related to SLA in NFV context.

2.1.1. Other research projects

Several recent research projects implementing SLA management frameworks for
different environments were surveyed in [2], such as Cloud4SOA (FP7) [5], Fed4FIRE
Project (FP7) [6] and the XIFI Project (FI-PPP) [7]. They were a good input to consider
them when designing the T-NOVA SLA ecosystem, however, they do not address the
specific particularities for the NFV business ecosystem that we address in T-NOVA.

Furthermore, automatic SLA SOTA is mainly in the scope of cloud, but T-NOVA
requires a combination of network functions and cloud, Cloud not being enough.
Usually, in telecommunications, SLAs can be seen as the minimum service acceptance
level a customer would agree to be delivered by a communication service provider,
though they are usually vague, not end-to-end and unknown to the network [8] [9].
Moreover, they are not as dynamic or as automatically managed as T-NOVA requires.

2.1.2. Standardization bodies

2.1.2.1. ETSI

At T-NOVA specification phase [1] ETSI did not define a business perspective to
manage the SLA relationships among the possible stakeholders in the NFV scheme,
but identified some requirements for the final network service SLA [10]:

[Req. 5] The SLA shall specify the “metrics” to define the value and variability of
“stability”.

[Req. 6] The NFV shall support mechanisms to measure the following metrics and
ensure that they are met per SLA:

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 12

- Maximum non-intentional packet loss rate.
- Maximum rate of non-intentional drops of stable calls or sessions (depending

on the service).
- Maximum latency and delay parathion on a per-flow basis.
- Maximum time to detect and recover from faults aligned with the service

continuity requirements
- Maximum failure rate of transactions that are valid and not made invalid by

other transactions.

[Cont.1] The SLA shall describe the level of service continuity required.

Moreover, in [11] ETSI gives a first approach of the different service quality metrics
that will influence the final service quality level that the end-user will experiment. ETSI
classifies these quality metrics in four groups:

- Virtual machine service quality metrics.
- Virtual network service quality metrics.
- Technology components offered as a Service (standalone VNFs).
- Orchestration service quality metrics.

Service Metric
Category

Speed Accuracy Reliability

Orchestration Step 1
(e.g.,
Resource Allocation,
Configuration and
Setup)

VM Provisioning
Latency

VM Placement Policy
Compliance

VM Provisioning
Reliability
VM Dead-on-Arrival
(DOA) Ratio

Virtual Machine
operation

VM Stall (event
duration
and frequency)
VM Scheduling Latency

VM Clock Error VM Premature Release
Ratio

Virtual Network
Establishment

VN Provisioning
Latency

VN Diversity
Compliance

VN Provisioning
Reliability

Virtual Network
operation

Packet Delay
Packet Delay Variation
(Jitter)
Delivered Throughput

Packet Loss Ratio Network Outage

Orchestration Step 2
(e.g.,
Resource Release)

 Failed VM Release Ratio

Technology Component
as a-
Service
-

TcaaS Service Latency TcaaS Reliability
(e.g.,defective
transaction
ratio)
TcaaS Outage

Table 2-1 Summary of ETSI NFV service quality metrics [11]

Update on December 2015 and relation to T-NOVA

In ETSI NFV second phase, a report was published in relation to business relationships
in the NFV ecosystem and further insights about suitable metrics to be part of SLAs in
NFV [12]. T-NOVA had been ahead of this business SLA analysis, though we have
explored here the alignment between T-NOVA approach and ETSI NFV to this
respect.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 13

Though the roles to be played in NFV ecosystem are aligned between T-NOVA and
[12], the business case explained in the latter context is slightly different in relation to
the roles that are played by each stakeholder. In [12] a more cloud perspective is
provided considering TMForum report on End-to-end cloud SLA management [13]
and QuestForum Handbook about technical measurements [14], so the customer may
have more control of the Service, which makes sense also from a business
perspective. In the other hand, technical issues as automated service verification
should be considered. T-NOVA on the contrary, makes the assumption that both
Customer and Service Provider must closely collaborate to configure the service, this
is indeed the Customer is in charge of configuration the service, but also the SP which
is the one that owns the MANO and NFVI is in charge of the actual deployment
based on its knowledge of the infrastructure.

The further proposed metrics by ETSI NFV in [12] are aligned with those explored in
T-NOVA (section 2.2), being classified in the following groups:

- VNF Software Quality Measurements
- Function Components Offered as-a-Service Quality Measurements
- Automated Lifecycle Management Quality Measurements
- Failure Notification Quality Measurements
- Virtual Infrastructure Quality Measurements

Also a sample of SLAs is provided named as Service Level Specifications (SLSs) as the
technical part of the SLA aligned with SLA specification done in T-NOVA (section 2.2):

- Key Quality Indicator (KQI)
- Threshold
- Measurement Point
- Estimator

2.1.2.2. TMForum

At the time of T-NOVA specification phase [1] writing, TMForum had not provided
any study of the possible SLA relationships that can arise in NFV ecosystem
specifically. However, in order to implement the T-NOVA SLA management system
we looked at SLA management in different cloud environments to be adapted to the
business NFV scenarios identified in T-NOVA.

TMForum [15] released in October 2014 a new version of its technical document:
Enabling End-to-end Cloud SLA Management [13] which refers to concepts and
considerations in multi-provider cloud environment that in T-NOVA may be applied
to the study of NFV SLA management, for instance:

- Cloud metrics, fall into two major categories: business metrics (often defined
within the SLA), and Technical metrics (monitoring metrics) that allow the
business SLA to be met. This can be applied also for SLA NFV metrics. For
instance, “response time” may be specified in the SLA, meanwhile other
technical measures such as “hops” and “bandwidth” may be used to
dynamically allocate resources, enabling “response time” SLAs to be met.

- Usage-based costing metrics are generally a sub-category of the business
metrics and will be a major component of a Service Agreement they may or

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 14

may not be part of Service Level Agreement. Some examples of usage-based
metrics are: number of users, instance minutes, storage resource capacity
used bytes, CPU minutes and RAM in megabytes, etc. Cost metrics are
established based on money currency per unit (“€/instance minute” for
example). SLA is primarily dealing with service assurance, but usage metrics
that contribute to bill calculation will not be in scope for SLA management.

TM Forum's SID (Information Framework) has a metrics interest group, which
delivered in September 2013 a modeling framework for metrics, in SID release 13.5
(definition of metrics, as well as hierarchy/relationships between metrics).

Requirements Recommendation

SLA Modelling Methodology: use a
common notation that is easily
understood at the business level to
model the SLA attachment point

Use the notation developed in [16] as the standards for SLA
roles and responsibility analysis.

Use TM Forum eTOM process fragments documented in
[TMF GB917] for E2E SLA process analysis and design. See
examples in (intermediary role & processes)

Use TM Forum information model (SID) and related entities
documented in [16] for E2E SLA information model analysis
and design.

Metric Model: There are various
types of metrics/measurements that
contribute to the overall calculation
of the SLA, such as Business Metrics,
Performance Metrics, and Storage
Metrics etc.). A meta model is
required that provides a consistent
description of these metrics that
likely to be developed by different
organizations and SMEs.

A Metric ABE (Aggregated Business Entity) is being defined
by the TM Forum Shared Information/Data Model team, this
work is to define a standardized definition and entity
relationships so that metrics developed by various
SDO/consortia can be joined up for the end-to-end
management purpose.

The intention of the SID metric ABE is to support all related
work in this area, such as the work done in NIST Cloud
Computing Metric group and the CSMIC work.

Service Level Specification (SLS)
Model: the schema for service level
specification that contains all
measurements that needs to be
monitored for a given service.

Recommend to use SID ServiceLevelSpecification [17] as
the standardized model for SLS schema development

Recommend to use SID to construct Service Level
Specification (SLS)

APIs: APIs to facilitate the
automation and interoperability of
SLA lifecycle management: SLA
negotiation, activation, configuration
and re-negotiation etc.

Candidates:

• WS-agreement, WS-agreement negotiation
• TM Forum
• SMI: for data collection
• SLA APIs, Catalogue management APIs (under

development)

Table 2-2 Standards for E2E Cloud SLA Management [13]

Update on December 2015 and relation to T-NOVA

In the last year TMForum has released the next two reports:

- IG1120 Virtualization Impact on SLA Management [18]: this exploratory report
provides initial thoughts on the impact of end-to-end SLA management in a
fully software-defined and virtualized environment, i.e., Cloud-SDN-NFV. Its
objective is to leverage knowledge and experience from the TM Forum SLAM
work, and apply it to virtualized environments.

- IG1127 End-to-end Virtualization Management: Impact on E2E Service
Assurance and SLA Management for Hybrid Networks [19]: This Application

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 15

Note brings out the challenges and impacts on end-to-end Service Assurance
and SLA management in a hybrid physical/virtualized environment. This
change introduces a host of actors, each responsible for part of the overall
solution, and creates new SLA/OLA constructs. It also necessitates new means
of operations – having SLA-linked Policy Orchestration, new RCA rules for
Fault Correlation, and automated closed loop controls, thus reaping the
benefits of virtualization as design principles.

TMForum still declares as future work the following items:

o SLA Management user stories and use cases for VNF package.
o Service Level Specification Template: ZOOM information model.
o Metrics for VNF and NFVI.
o Policy-model: ZOOM information model.
o Policy-based SLA Management and APIs: ZOOM Future OSS/BSS.

Therefore, T-NOVA potential contribution to TMForum can be related mostly with the
SLA templates specification as part of the service information model, and metrics
identified for VNFs.

2.2. T-NOVA SLA framework design

In T-NOVA there is a hierarchical SLA ecosystem, since there are two different SLAs
according to the 2 different commercial relationships that exist:

1. The SLA agreed between Function Provider (FP) and Service Provider (FP).
2. The SLA between the Service Provider and its customers.

The T-NOVA SLA lifecycle will be implemented in the following steps:

1. SLA Template Specification: the SP and FPs follow a clear step-by-step
procedure describing how to write an SLA template to provide a correct
service description. (The SLA template will be a form that has the same
structure as the SLA Agreement but some fields are not filled yet or might
change as a result of the negotiation process).

2. Publication and Discovery:
o The FP publishes the different SLA offers as part of the metadata that

will be stored in the T-NOVA Function Store for each NF when
uploading a VNF packaged [20]. The SP will discover the different SLA
options by means of the brokerage procedure [21].

o The SP publishes the different SLA offers for the NSs through the
business service catalog for the customer to browse/compare offers.

3. Negotiation: agreement on SLA conditions between the customer and the SP
and between the SP and the FPs.

o For the SLA between customer and SP this will be done by the
customer selecting one of the predefined offerings from the business
service catalog.

o For the SLA between SP and customer this will take place as the result
of the trading process of VNFs with specific SLAs, but formalized in a
second step once the service has been acquired by the customer.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 16

4. Resource Selection: depending on the chosen SLA for every service, the
orchestrator will allocate the resources that need to be assigned to the service
in order to meet that SLA [22].

5. Monitoring and Evaluation of the SLA: this step will take place by comparing all
the terms of the agreed SLA with the metrics provided by the orchestrator
monitoring system. (These results will be available to be shown through the
dashboard when the SP or customer requires it).

6. Accounting: this will be done invoking the charging/billing system to inform
about billable items as penalties based to the result of step 5.

Figure 2-1 SLA lifecycle

2.2.2. SLA between SP and FP: VNF SLA

This is the SLA agreed between the SP and the different FPs that sell the VNF as part
of a network service.

There could be two different approaches for the SLA associated to a VNF acquisition
by the SP. On one hand each network function is a software product that the SP
acquires to be deployed in his own infrastructure therefore we could think on one
hand of a SLA associated to the software itself, to which we refer in 2.2.2.1. , and on
the other hand having expected performance of each VNF, such as VNF downtime,
number-of-subscribers, etc., to which refer in 2.2.2.2.

2.2.2.1. SLA software

What the SP purchases to the FPs are software applications with accompanied
metadata and images, this is, the deployment view of the VNFs software architecture.

In software development, specific SLAs can apply to application outsourcing contracts
in line with standards in software quality, and recommendations provided by neutral

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 17

organizations like CISQ, which has published numerous papers on the topic (such as
Using Software Measurement in SLAs) [23].

2.2.2.2. SLA VNF specific monitoring parameters

The SLA agreed between SP and FP includes the specification of the expected
performance of the VNF according to the VNF specific monitoring parameters that
will be part of the VNFD in accordance with the definition for the monitoring
parameters that ETSI gives for the VNFD:

Monitoring parameters, which can be tracked for a VNF can be used for specifying
different deployment flavours for the VNF in a VNFD, and/or to indicate different
levels of VNF service availability. These parameters can be an aggregation of the
parameters at VDU level e.g., memory-consumption, CPU-utilisation, bandwidth-
consumption etc. They can be VNF specific as well such as calls-persecond (cps),
number-of-subscribers, no-of-rules, flows-per-second, VNF downtime, etc. One or
more of these parameters could be influential in determining the need to scale [24].

VNF specific metrics that will be derived for each VNF in T-NOVA use cases are
detailed in [25].

2.2.3. SLA between SP and customer

Various types of metrics/measurements can contribute to the overall calculation of
the technical metrics that may be part of the SLA for a Network Service. Therefore a
metamodel is required to provide a consistent description of these metrics that are
likely to be developed. In T-NOVA the SLA between SP and customer will be
described and agreed in T-NOVA depending on the metrics that the monitoring
system in T-NOVA will measure, which can depend on:

- Orchestration operation
- Virtual machine operation
- Network operation
- Monitoring metrics of the VNFs which defined their expected performance,

this is the SLA agreed by the SP and FPs for all the VNFs that are part of the
NS.

Therefore, in a general case, at this stage we make the assumption that the SLA
between SP and a Customer will be an aggregation or combination of the SLAs
agreed between the SP and FPs for the VNFs that compose the service.

A T-NOVA network service has two kinds of metrics: the ones inherited from the
VNFs that compose it and metrics of the service itself that do not belong to the VNFs.
At the moment of the service SLA definition, the possible metrics are presented to the
service provider and the aggregated value will depend on the selected topology
(m1+m2, max[m1, m2], avg[m1, m2], etc.). Only metrics of the same kind can be
aggregated. The chosen formula to calculate the aggregated value will be added to
the NSD so the service metric values can be generated based on the monitoring of
the VNFs that are present in this formula.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 18

The system offers also the service provider the option to add generic metrics that are
not among the VNF because they depend on the infrastructure where it’s deployed;
metrics that are common to the network services regardless the VNFs they use, e.g.
Service uptime.

The list of generic metrics to be monitored in T-NOVA relevant for the current T-
NOVA use cases are collected in Table 2-3 (This list is meant to be continuously
updated throughout the project in order to align with the technical capabilities and
requirements of the components under development and the use cases which are
implemented).

Domain Metric Units

VM/VNF CPU utilisation %

VM/VNF No. of VCPUs #

VM/VNF RAM allocated MB

VM/VNF RAM available MB

VM/VNF Disk read/write rate MB/s

VM/VNF Network Interface in/out
bitrate

Mbps

VM/VNF Network Interface in/out
packet rate

pps

VM/VNF No. of processes #

Compute Node CPU utilisation %

Compute Node RAM available MB

Compute Node Disk read/write rate MB/s

Compute Node Network i/f in/out rate Mbps

Storage (Volume) Read/write rate MB/s

Storage (Volume) Free space GB

Network
(virtual/physical
switch)

Port in/out bit rate Mbps

Network
(virtual/physical
switch)

Port in/out packet rate pps

Network
(virtual/physical
switch)

Port in/out drops #

Table 2-3 Metrics collected by the VIM monitoring manager [26]

According to the Monitoring Parameters part of the NSD that ETSI has defined [24]:

The NS monitoring parameters represent those which can be tracked for this NS. These
can be network service metrics that are tracked for the purpose of meeting the network

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 19

service availability contributing to SLAs (e.g. NS downtime). These can also be used for
specifying different deployment flavours for the Network Service in Network
Service Descriptor, and/or to indicate different levels of network service
availability. Examples include specific parameters such as calls-per second (cps),
number-of-subscribers, no-of-rules, flows-per second, etc. 1 or more of these
parameters could be influential in determining the need to scale-out.

Based on the collection of parameters that can be collected at different levels in the
system, we may have also as part of the SLA some SLA telco service parameters such
as: delay, jitter, packet loss, etc. that are related directly with Quality of Service that
the final customer will perceived when using end-to-end services.

2.2.3.1. Service deployment flavours

ETSI NFV uses the Gold, Silver, Bronze notation for the definition of a particular NS
that is composed by a number of VNFs and a Connectivity Service, which we use in T-
NOVA to name a group of technical parameters for the SLA specification. However
that notation, as it is defined at the moment, does not correspond to any particular
principle/rule common to all the possible compositions available in T-NOVA. The
analogy that we can think is coming from the relevant usage of the three colour
marker in networking. The table below attempts to provide a generic framework for
the definition of this approach.

Flavour name Properties

Gold

- Highest Priority Service
- Scaling requirement in terms of resources are taken into account (always available)
- Network traffic QoS equal to EF or at least AF1x or whatever the supported service

differentiation allows
- Access to the IT resources should be prioritised

Silver

- Statistical Prioritisation for the service
- Guarantee the minimum requirements in terms of resources as those are specified by the NS,

however able to provide additional resources in case they are available on the NFV-PoP.
- Network resources could follow the established Assured Forwarding class service

differentiation that has the same notion as the above for the IT resources
- Access to the IT resources could be prioritised among different Silver services from multiple

tenants or the same tenant (complicated)

Bronze

- Equal to a Best Effort service but with an asterisk
- For IT resources No scaling is allowed
- For Network resources No calling is allowed and the traffic is always mapped to Best Effort

class.
- The system guarantees the IT resources required for the service to be operational.

Table 2-4 Generic Networking service deployment flavours

In this way we would have a service deployment flavour that is defined independently
of the kind of service, which is aligned with what is understood in the networking
world for a deployment flavour, unlike the expected performance of the specific
service by means of QoS parameters, that is typically part of the SLA as it has been
explained in the previous section.

At the current stage we consider this as future work.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 20

2.3. SLA module architecture

Figure 2-2 shows where the SLA management module is located within the
Marketplace architecture. It has external interactions with the Dashboard, the
Accounting module and the NFV Orchestrator.

Figure 2-2 SLA management module in the Marketplace architecture

- The SLA module receives the input SLA templates from the dashboard after
each VNF and service is created.

- The SLA module receives the input SLA agreements once the contracts (SP-FP
and Customer-SP) have been established.

- The information of the monitoring of the services and VNFs comes from the
orchestrator Service Monitoring Component which is responsible for
monitoring all the service-related metrics that will be specified inside the NSD.

- The output of the SLA module is to the Accounting module, which receives
the results of the SLA assessment: SLA violations and penalties of the running
agreements for later proper billing.

The internal architecture of the SLA module is shown in Figure 2-3.

Figure 2-3 SLA management module internal architecture

SLA Management module

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 21

The internal sub-modules have the following functions:

- Factory, that parses the templates and the agreements produced after the
negotiation phase before storing them.

- Evaluation, that decides whether the values received from the monitoring
constitute a SLA violation or not.

- Assesment, that calculates the penalties based on the produced violations.
- Repository, where all the templates, agreements and the information related

to the violations and penalties generated from the SLA assesment are stored.

The first input of SLA management modules, SLA templates and SLA agreements
after the negotiation phase. The templates as well as the agreements parsed are
stored in the internal database.

After that, the second kind of input comes from the monitoring system. The SLA
management module can work with the different kind of monitoring systems
available:

- Simple monitoring systems that must be polled in order to retrieve the
metrics or that are able to push the metrics into the SLA core once they are
available.

- Smart monitoring systems that are able to evaluate the constraints, and raise
the appropriate violations.

In the T-NOVA case, we collect raw data from the monitor in the Orchestrator that
provides the metrics’ monitoring data on request.

Once the metrics are evaluated and the SLA violations are generated as a result of
this evaluation, the assessment calculates the penalties that are deducted from the
violations and that’s the output to the accounting system for billing purposes. The
violations and penalites occurred are stored in the internal database for future
consultation.

The information on how to proccess all this information is in the SLA agreements:
what is considered a violation and which kind of penalty is applicable in each case.

2.4. T-NOVA SLA Workflow

As explained section 2.2 the VNFs and the Network Services (NSs) are taken as
distinct products in terms of the contract, i.e. they have different agreements and are
evaluated individually.

Figure 2-4 represents the workflow in the SLA process in T-NOVA Marketplace. Next
the workflow is explained from each stakeholder perspective: Function Provider,
Service Provider and customer.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 22

Figure 2-4 SLA workflow sequence diagram

2.4.1.1. Function Provider (FP) SLA workflow

The FP’s SLA workflow starts when the FP defines a VNF in the VNF descriptor: the
SLA template is then created based on this VNFD . Each VNFD may include several
flavors for a single VNF. Within each flavor the following information is specified:

1. Hardware requirements (VDU (Virtual Deployment Unit)) for eachVNFC and
Virtual Links connecting those VNFCs, needed to achieve the performance
expressed by max o min values for certain metrics.

2. Metrics:
- Name
- Value

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 23

- Min. or max (whether the value is a minimum or a maximum).
3. Violations: Number of breaches within a range of time for each metric.

- Count
- Interval (secs)

4. Penalties: What to do if SLA is violated for each metric.
- By default, the penalties are going to be discounts on the price the SP

pays the FP for the usage of each one of his/her VNF instances.
- Params: Example of a 10% discount in that metric for 1 day.
- type: "discount"
- expression: "10" <value_of_the_discount>
- unit: "%" <unit_of_the_expression>
- validity: "P1D" <period>

2.4.1.2. Service Provider (SP) SLA workflow

The SP’s SLA workflow starts when the SP creates a network service by combining
VNFs. The SLA template which of the offered SLA (SLA specification) is created based
on the NSD of the recently defined service. The following information must be
specified within the NSD related to the SLA:

1. Metrics are going to be part of the SLA among the metrics inherited from the
VNFs with the posibility of combining the ones of the same kind from
different VNFs.

2. Custom added metrics for the Service (if any)
- E.g. Availability

3. Violations: Number of breaches within a range of time for each metric.
- Count
- Interval (secs)

4. Penalties: What to do if SLA is violated for each metric.
- By default, are going to be discounts on the price the Customer must pay

for the usage of the service.
- Params: Example of a 10% discount in that metric for 1 day.
- type: "discount"
- expression: "10" <value_of_the_discount>
- unit: "%" <unit_of_the_expression>
- validity: "P1D" <period>

2.4.1.3. Customer SLA workflow

The Customer’s SLA workflow starts when the Customer selects a network service for
purchase and later use. This workflow is as follows:

1. The Customer selects a (Network) Service (NS) with specific SLA defined. (The
same service can be offered with different SLAs).

2. The SLA agreements between the function providers of the VNFs that
participate in the Service and the service provider are automatically
generated by the accounting module based on the templates already created
and adding some extra information:

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 24

§ the begining date of the contract is added.

§ the purchased VNFs (vnfId, providerId, dates, paymentMethod…) is

Introduced for SLA tracking.
3. The SLA agreement between the SP and the Customer is automatically

generated by the accounting module based on the templates already created
and adding some extra information:

§ the begining date of the contract is added.

§ the purchased Service (serviceId, providerId, dates, period,

paymentMethod…) is introduced for SLA tracking.
4. All the agreements we have just introduced are started, again by the

accounting module.
While services and VNFs are running, the SLA module will collect the monitoring
information for each metric that is part of an SLA from the monitoring service
(Orchestrator) every minute and verify whether the agreements are meeting, storing
the outcome of this process (possible penalties) in the internal database.

The SLA module is queried by the Accounting module and the Dashboard by means
of its API. The Accounting module does it to gather violations and penalties
information for billing purposes and the Dashboard to build statistics for the users.

This cycle will go on until the customer decides to stop the use of a service:

5. Stop & Release:

1. Stop and Terminate the Service agreement.

2. Stop and Terminate the agreement corresponding to each of the

VNFs.

3. Keep all the involved agreements for future statistics.

2.5. Implementation

2.5.1. WS-agreement

The SLA core is WS-Agreement [27] compliant (see more details in annex 6.1). As
such, this document uses the terms used in the specification.

The WS-Agreement language defines the data types for expressing the content of an
agreement. This language is defined independently from the WS-Agreement protocol
and can therefore be used in a wide set of scenarios, for example with other protocol
bindings. It is defined in the form of XML schema (although for T-NOVA we have
translated the schema to the JSON format) and describes the data types and the
structure of the Agreement document, the Agreement Template document, and the
Agreement Offer document. The WS-Agreement specification defines two separate
schemata, the agreement schema and the agreement state schema. The agreement
schema that defines the WS-Agreement core data types and the agreement state

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 25

schema that includes the data types for the dynamic agreement monitoring, namely
the agreement states, service term states and guarantee term states.

Figure 2-5 Basic structure of an SLA agreement

§ An SLA agreement contains an agreement identifier, its name, an agreement
context and a term compositor with a detailed description of the service to
provide:Name: Optional Name

§ Context: The context describes ‘meta-data’ of the whole Agreement,
including and agreement Life-time and a template name.

§ Term Compositor: This represents a scheme to compose an AND/OR/XOR
relationship of the following two elements.

• Service Description Term: Contains the information needed to
instantiate or identify a service to which this agreement pertains.

• Guarantee Term: Service Levels that the parties are agreeing to.
Basically, the KQIs of the service, the SLA thresholds and the applicable
penalties.

2.5.2. Implementation guidelines

The development of the SLA module is based on the following guidelines:
§ A Provider offers a Service: network service or VNF.
§ The service is described by ServiceDescriptionTerms with a Domain Specific

Language. The ServiceDescriptionTerms are intended to define a service that
has to be provisioned. This SLA module needs external provision.

§ The service is represented by a Template, and the Template can be used to
generate an Agreement.

§ An agreement is a "document" that associates a Service and a Consumer.
When the relation is in negotiation-phase, it's called an AgreementOffer. Once
the agreement is accepted, it's called a Contract (this name is not used by the
spec).

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 26

§ A Template and an Agreement can describe some restrictions to be fulfilled
by the Consumer or by the Provider.

§ A violation of any restriction generates a violation.
§ A violation is subdivided in breaches. A certain amount of breaches in a

specified range of time constitute a violation.
§ Introduced the field “requirements” inside serviceDescriptionTerm where it’s

described the initial requirements (typically hardware) for the service to be
offered.

The WS-Agreement specifies in the context element who is the provider and the
consumer, with the elements:

§ AgreementInitiator (some kind of initiator identifier; OPTIONAL),
§ AgreementResponder (some kind of responder identifier; OPTIONAL),
§ ServiceProvider (=AgreementInitiator | AgreementResponder)

Usually, the consumer is the initiator. Although ws-agreement specifies
AgreementInitiator/Responder as optional, it is recommended to specify them in the
SLA template and agreement

SLA templates are created based on each VNFD and NSD. The SLA template is a draft
of the contract that the involved parts will sign once the product (VNF or service) is
acquired with minor modifications.

Example of an existing T-NOVA SLA template in JSON format:

{
 "context": {
 "agreementInitiator": null,
 "agreementResponder": "providerajax",
 "service": "TC / should an ontology be defined or this is free text
input?",
 "serviceProvider": "AgreementResponder",
 "templateId": "vnf3a2971d0-2eae-11e5-a2cb-0800200c9a66calls5k"
 },
 "name": "nombre",
 "templateId": "vnf3a2971d0-2eae-11e5-a2cb-0800200c9a66calls5k",
 "terms": {
 "allTerms": {
 "guaranteeTerms": [
 {
 "businessValueList": {
 "customBusinessValue": [
 {
 "count": 1,
 "penalties": [
 {
 "expression": 5,
 "type": "discount",
 "unit": "%",
 "validity": "P1D"
 }
]
 }
]
 },
 "name": "pepito",

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 27

 "qualifyingCondition": null,
 "serviceLevelObjetive": {
 "kpitarget": {
 "customServiceLevel": " { \"policies\": [{
\"count\" : 2, \"interval\": 30 }], \"constraint\" : \"pepito GT 0.5\" }",
 "kpiName": "pepito"
 }
 },
 "serviceScope": null
 },
 {
 "businessValueList": {
 "customBusinessValue": [
 {
 "count": 1,
 "penalties": [
 {
 "expression": 5,
 "type": "discount",
 "unit": "%",
 "validity": "P1D"
 }
]
 }
]
 },
 "name": "juanito",
 "qualifyingCondition": null,
 "serviceLevelObjetive": {
 "kpitarget": {
 "customServiceLevel": " { \"policies\": [{
\"count\" : 2, \"interval\": 30 }], \"constraint\" : \"juanito GT 0.7\"
}",
 "kpiName": "juanito"
 }
 },
 "serviceScope": null
 }
],
 "serviceDescriptionTerm": {
 "name": "requirements",
 "requirements": [
 {
 "name": "virt_mem_res_element",
 "value": 6,
 "unit": "GB"
 },
 {
 "name": "CPU",
 "value": 6,
 "unit": "cores"
 },
 {
 "name": "TLB size",
 "value": 1024,
 "unit": ""
 },
 {
 "name": "storage",

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 28

 "value": 20,
 "unit": "GB"
 }
],
 "serviceName": "calls5k"
 },
 "serviceProperties": [
 {
 "name": "MonitoredMetrics",
 "serviceName": "default",
 "variableSet": {
 "variables": [
 {
 "location": "/monitor/pepito",
 "metric": "xs:double",
 "name": "pepito"
 },
 {
 "location": "/monitor/juanito",
 "metric": "xs:double",
 "name": "juanito"
 }
]
 }
 }
]
 }
 }
}
The format of the SLA agreement is exactly the same as the template but filling in the
purchaser (AgreementInitiator) and modifying the information that has changed in
the negotiation between the seller and the buyer.

2.5.3. Enforcement (assessment)

The enforcement is the process by which it is evaluated that the provider complies
with an agreement, i.e. the measured metrics for the variables in guarantee terms
fulfill the constraints. Actually, ‘assessment’ would be a more accurate term but we
keep ‘enforcement’ to be compliant with the ws-agreement specification.

The enforcement process is depicted in the following sequence diagrams:

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 29

The job of each class is the following:

§ AgreementEnforcement: retrieves the metrics needed to enforce an
agreement (if periodic enforcement execution), calls the AgreementEvaluator
and saves the detected violations and compensations in repository.

§ AgreementEvaluator: calls the GuaranteeTermEvaluator for each guarantee
term in the agreement.

§ GuaranteeTermEvaluator: calls the ServiceLevelEvaluator, obtaining the raised
violations; calls the BusinessValuesEvaluator using the violations as input.

§ ServiceLevelEvaluator: calculates the violations. The implemented evaluator
uses the concept of policy, where a number of violation metrics (a breach)
must occur in a period of time (specified in the policy) to raise a violation.
More details below.

§ ConstraintEvaluator. Parses the service level constraint, and evaluates if a
metric fulfills the constraint.

§ MetricsRetriever. Actively queries for the last metrics of an agreement. Used in
periodic execution.
MetricsReceiver. Passively receives the last metrics of an agreement. Used in
on-demand execution. The frontend for the receiver can be a REST service, a
Message Queue, etc.

2.5.3.1. Metrics Retriever

The monitoring system is independent from the SLA module. For this reason, an
adapter has to be implemented in order for the SLA retrieve the metrics needed to
do the assessment. The way the external monitoring system communicates with the
SLA module will be described later on the integration section 2.6.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 30

2.5.3.2. Constraint evaluation

A simple constraint definition and evaluation is implemented, where a constraint can
be defined by the following grammar:

E -> id OP VALUELIST
OP -> "GT" | "GE" | "EQ" | "LT" | "LE" | "NE" | "BETWEEN" | "IN"
VALUELIST -> "(" value "," value ")"
VALUELIST -> value

Only float values are allowed.

For example, the following constraints are valid:

responsetime LT 200
availability EQ 1
voltage BETWEEN (4.5, 5.5)
status IN (200, 204)
A constraint is satisfied if a metric evaluate the condition to true. Otherwise, the
metric is considered as a Breach.

2.5.3.3. Policies

The policies used in C4S are an interesting feature not covered by the WS-
Agreement.

A policy is compound by:

§ a date interval
§ a number of occurrences

The objective of a policy is specify when to raise a violation. Instead of raise a
violation on every constraint breach, it's raised when a number of breaches are found
within the specified interval.

WS-Agreement does not make room to define something like a policy in a
ServiceLevelObjective, so we are going to define the policy in the
CustomServiceLevel, along with the constraint definition. So, it's proposed to define
the CustomServiceLevel like this:

{
 policies: [{ count : 2, interval: 120 }, { count: 2, interval: 3600],
 constraint: "responsetime LT 100"
}
So, if a service provider wants to offer policies in their SLA, they have to be compliant
with this format. The constraint string is still totally domain defined.

2.5.3.4. Business rules (penalties)

A simple and generic implementation of business rules has been included in the core.
Each guarantee term may have a BusinessValueList element where the penalties of
not satisfying a guarantee term are defined.

The business structure defined in the ws-agreement specification is not expressive
enough for our purposes, so that structure is basically ignored, and the

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 31

implementation makes use of CustomBusinessValues to define the business rules as a
generalization of the standard penalties.

The recognized xml structure is:

<wsag:BusinessValueList>
 <wsag:Importance>xs:integer</wsag:Importance>?
 <wsag:CustomBusinessValue count="xs:integer" duration="xs:duration">
 <sla:Penalty
 type="xs:string"
 expression="xs:string"
 unit="xs:string"
 validity="xs:string"
 />*
 </wsag:CustomBusinessValue>*
</wsag:BusinessValueList>
Count and duration attributes are optional. If not specified, this CustomBusinessValue
applies at each violation. Otherwise, it applies only if count violations occur in
a duration interval of time.

The interpretation of every Penalty attribute is up to an external accounting module,
but the intended meaning is:

§ type: kind of penalty (e.g: discount, service, terminate)
§ expression, unit: value of the penalty (e.g. discount of (50, euro), discount(100,

%), service(sms))
§ validity: interval of time where the penalty is applied

Each time a violation is generated, the assessment calculates if a business rule must
be applied. If so, the corresponding Penalty is saved, and passed to the notification
component.

The parsing of the business value list is performed in the IModelConverter. If a project
wants to use a different xml structure, it can write the jaxb classes and a new
BusinessValueListParser. The assignment of the parser to the model converter is done
in the applicationContext.xml. The class to assign is defined in the
configuration.properties file.

2.5.4. License

The SLA module code is released under the Apache License, Version 2.0 [28].

The way the SLA module is developed permits an easy integration, which will make
possible the use of this module in as many contexts as possible, allowing a minor
personalization.

Also the chosen kind of license helps to make the choice of using our SLA module
over any other similar solution easier.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 32

2.6. Integration

The different modules in the T-NOVA marketplace are integrated using Docker [29].
Each module is a different docker container and the inter-module communications
are via REST API.

In T-NOVA, the SLA management module has interactions with different parts of the
system on three different interfaces: to the Dashboard, the Accounting module and
the NFV Orchestrator. How these interactions should take place in explained in detail
in the next section.

The SLA module micro service is deployed within the Marketplace docker structure in
a separate container. To be able to do so, the general docker-compose file needs to
have a section dedicated to the SLA module and its dependencies.

Once we have the dependencies fulfilled, it’s time to configure the container. A
dockerfile (see annex) tells how to create the container and the script DockerStart.sh
(see annex) tells how to execute it.

The SLA module relies on a MySQL database that is deployed in a different container
(it’s used by several modules) and we only have to create the database and the
tables. This is done in the MySQL initialization file.

2.6.1. SLA module API definition

The operations supported by the SLA API are exposed to the following modules:
dashboard (T-Da-Sl), accounting (T-Ac-Sl).

2.6.1.1. Dashboard interface (T-Da-Sl)

The following operations supported by the SLA API are exposed to the dashboard.

(a) Create a provider. (The uuid can be specified in the request)

URL /providers

Type POST

Headers Accept: application/json

Content-type: application/json

Parameters

Response
code

409: The uuid or name already exists in the database.

201: Created.

Request
example

POST /providers/ HTTP/1.1

POST item
example

{
 "uuid":"fc923960-03fe-41eb-8a21-a56709f9370f",
 "name":"provider-prueba"

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 33

}

Table 2-5 SLA API operation to register a provider

(b) Create a new template.

The file might include a TemplateId or not. In case of not being included, a uuid will
be assigned.

URL /templates

Type POST

Headers Accept: application/json

Content-type: application/json

Parameters

Response
code

§ 409: The uuid already exists in the database.
§ 409: The provider uuid specified in the template doesn't exist in the

database.
§ 500: Incorrect data has been suplied.
§ 201: Created.

Request
example

POST /templates/ HTTP/1.1

POST item
example

SLA template (see annex section 2).

Table 2-6 SLA API operation to create a new template

(c) Update the template identified by TemplateId.

The body might include a TemplateId or not. In case of including a TemplateId in the
file, it must match with the one from the url.

URL /templates/{templateId}

Type PUT

Headers Accept: application/json

Content-type: application/json

Parameters § TemplateId: Id of the template we want to modify.

Response
code

§ 409: The templateId from the url doesn't match with the one from
the file..

§ 409: Template has agreements associated.
§ 409: Provider doesn't exist
§ 500: Incorrect data has been supplied
§ 200: OK

Request
example

PUT /templates/vnfvnf5gold HTTP/1.1

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 34

PUT item
example

SLA template (see annex section 2).

Table 2-7 SLA API operation to update the template identified by TemplateId

(d) Retrieve a template identified by templateId.

URL /templates/{templatetId}

Type GET

Headers Accept: application/json

Content-type: application/json

Parameters § TemplateId: Id of the template we want to retrieve.

Response
code

§ 404: The templateId doesn't exist in the database.
§ 200: OK.

Request
example

GET /templates/vnfvnf5gold HTTP/1.1

Response
example

SLA template in JSON form (see annex section 2)

Table 2-8 SLA API operation to retrieve a template identified by templateId

(e) Retrieve an agreement identified by agreementId.

URL /agreements/{agreementId}

Type GET

Headers Accept: application/json

Content-type: application/json

Parameters § agreementId: Id of the agreement we want to retrieve.

Response
code

§ 404: The uuid doesn't exist in the database.
§ 200: OK.

Request
example

GET /agreements/vnfidf51 HTTP/1.1

Response
example

SLA agreement in JSON form (see annex section 3)

Table 2-9 SLA API operation to retrieve an agreement identified by agreementId

The AgreementId matches the AgreementId attribute of wsag:Agreement element
when the agreement is created.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 35

2.6.1.2. Accounting interface (T-Ac-Sl)

The following operations supported by the SLA API are exposed to the accounting.

(a) Create a new agreement.

The body might include an AgreementId or not. In case of not being included, a uuid
will be assigned. A disabled enforcement job is automatically created.

URL /agreements

Type POST

Headers Accept: application/json

Content-type: application/json

Parameters

Response
code

§ 409: The uuid already exists in the database.
§ 409: The provider uuid specified in the agreement doesn't exist in

the database.
§ 409: The template uuid specified in the agreement doesn't exist in

the database.
§ 500: Incorrect data has been supplied.
§ 201: Created.

Request
example

POST /agreements/ HTTP/1.1

POST item
example

SLA agreement in JSON form (see annex section 3)

Table 2-10 SLA API operation to create a new agreement

(b) Start or stop an enforcement job.

An enforcement job is the entity which starts the assessment of the agreement
guarantee terms. An agreement can be assessed only if an enforcement job, linked
with it, has been previously created and started. An enforcement job is automatically
created when an agreement is created, so there is no need to create one to start an
assessment.

URL /enforcements/{agreementId}/{command}

Type PUT

Headers Accept: application/json

Content-type: application/json

Parameters § agreementId: Id of the agreement we want to start/stop.
§ command: start | stop.

Response
code

§ 403: It was not possible to start the job.
§ 200: OK.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 36

Request
example

PUT /agreements/vnfidf51/start HTTP/1.1

Table 2-11 SLA operation to start or stop an enforcement job

(c) Retrieve information from a penalty filtering by agreementId, metric
name and dates.

URL /penalties/{?agreementId,guaranteeTerm,begin,end}

Type GET

Headers Accept: application/json

Content-type: application/json

Parameters § agreementId: if specified, search the penalties of the agreement with
this agreementId.

§ guaranteeTerm: if specified, search the penalties of the guarantee
term with this name (GuaranteeTerm[@name]),

§ begin: if specified, set a lower limit of date of penalties to search,
§ end: if specified, set an upper limit of date of penalties to search.

Response
code

§ 404: Erroneous data is provided in the call.
§ 200: OK.

Request
example

GET /penalties/?agreementId=vnfidf51&guaranteeTerm
=pepitovnf5&begin=2015-11-03T15:00:30CET&end=2015-11-
03T17:00:30CET HTTP/1.1

Response
item
example

[
 {
 "uuid": "5eaf2fa8-e533-4f76-8e78-cf7c3cce6b27",
 "agreementId": "vnfidf51",
 "datetime": "2015-11-03T16:10:30CET",
 "definition": {
 "type": "discount",
 "expression": "5",
 "unit": "%",
 "validity": "P1D"
 },
 "violation": {
 "expectedValue": "pepitovnf5 GT 0.5",
 "actualValue": "0.16491713356365545",
 "kpiName": "pepitovnf5"
 }
 }
]

Table 2-12 SLA API operation to retrieve information from a penalty

2.6.2. Calls to other APIs

In order to implement T-Or-Sl it is the SLA module the one that calls the Orchestrator
API for monitoring information. The format of this call is:

Request:

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 37

GET	orchestrator/monitoring{?instance_type,	instanceId,	metric,	
date_begin, date_end, maxResults} 	

Parameters:

§ instanceType: it can be “ns” or “vnf”,
§ instanceId: instance ID of the service or VNF,
§ metric: name of the metric we want to obtain the monitoring data,
§ date_begin: sets a lower limit of date of the monitoring,
§ date_end: sets an upper limit of date of the monitoring,
§ maxResults: if specified, limits the amount of results up to this number.

Response example:

HTTP/1.1 200 OK

Content-Type: application/json
[
 {
 “metricname”: “packets_per_second”,
 “value”: 100,
 “date: "2015-01-21T18:49:00CET",
 }
]

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 38

3. T-NOVA BILLING AND ACCOUNTING

3.1. State of the Art analysis for Billing in T-NOVA

In [2] a detailed survey of billing models was done including internet players as
Amazon [30], Google Play [31] and Apple Application Store [32] that use innovative
combination of sharing revenue business models and marketplaces; also Telco API
usage was considered, as in Telefónica’s BlueVia [33] or Orange’s Partner [34], where
application developers receive a revenue share from Telco APIs usage by the final
users.

On the other hand in cloud provider environments, such as Optimis project [35],
different software licensing models are proposed and applied.

All these options were considered for the suitability of T-NOVA as it is explained in
the following section.

3.2. T-NOVA Billing framework design

As explained in section 1.2, T-NOVA Marketplace involves two types of commercial
relationships:

§ The Service Provider (SP) acquires Virtual Network Functions (VNFs) from the
Function Providers (FPs).
The Customer acquires Network Services (NSs) provided by Service Providers
based on the combination of VNFs previously purchased.

3.2.1. Billing for VNFs

One of the main benefits of T-NOVA approach is the opening of the telecom market
to individual and SME software developers. By means of T-NOVA Marketplace, VNF
developers (Function Providers, FPs) are allowed to create commercial offerings,
advertising their algorithms materialized as virtual network appliances, as well as
manage the whole commercial process to sell them, including SLA negotiation and
billing. In order to attract as many FPs as possible and therefore maximize its impact
T-NOVA will adopt a flexible go-to-market strategy including flexibility in choosing
among several billing models for each particular case of VNF product that they are
offering.

Based on the state of art analysis in [2] in T-NOVA four options for billing the SP for
standalone VNFs have been considered:

§ Licensing: FPs sell their VNFs to the SP using a software license. Since the Network
Functions are no more than software applications, it seems logical to use this kind
of purchase method. The FP concedes a license over his VNF to an SP for a
specific time span, that is, during the duration of the contract the SP can make
use of that VNF in unlimited Services and sell unlimited amounts of those services

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 39

to Customers. The SP will only pay once for the VNF. The leasing time may vary
from a day to a lifetime. The following options are considered possible regarding
the types of licensing:

§ Option 1: The FP would issue licenses for several instances of each VNF to
a SP. The SP will have to pay for all of them even if it is not using them,
due to the fact that this use will depend on a customer purchasing a
service composed by this VNF.

§ Option 2: The SP will have open bar of instances of the purchased VNF
and sell an infinite number of services containing that VNF.

§ Subscription: The Customer establishes the billing period and the contract ending
date will be extended automatically unless the Customer explicitly indicates it will
not be extended any longer at the end of the current period.

§ Pay-As-You-Go (PAYG): The client (Customer or SP) purchases a Service (or VNF),
and he will only be charged for the time of use of that (instance of the) Service.
The time counter starts once the Service is purchased. The client will make use of
the service for several periods of time or for only a part of one. Usually for short
periods of time, since it is on demand and therefore, more expensive. The client
will be charged per hours or days and the service will be running until it's stopped
by hand by the Client.

§ Pay-As-You-Earn - Revenue sharing (RS): The FP will get from the SP a percentage
of the benefits the SP has obtained in the use of a VNF owned by the FP. I.e. FP
specifies a % of participation. Once the VNF is purchased by a SP for the Service
S1, the SP will pay the FP that % of the earnings for S1 during the life of S1.
Payments will be done at the end of the life of S1 and at the end of every billing
cycle that is agreed by the SP and the Customer at a higher level.

Either way, licensing model is neither fair nor profitable for the SP or for the FP and
does not add any extra value compared to the other two methods (RS, PAYG), which
are way more effective. Therefore we conclude that licensing is not suitable for T-
NOVA ecosystem.

We have also come to understand that the subscription model does not contribute
business wise, to a more resourceful billing system and furthermore, it is included in a
PAYG model, this is, having a subscription for the use of a service or a VNF implies a
closed period of use (renewable). But if the user decides to stop using the service, the
remaining time until the end of the period will be charged anyway. In the best case,
the subscription end of period will coincide with the end of the use and in such case;
we will be talking about PAYG model.

The conclusion is that Pay-As-You-Go and Revenue Sharing are the most generic
and thorough models to bill VNFs in T-NOVA and also the most beneficial for the
FPs. Hence this approach is expected to provide the maximum T-NOVA impact
attracting VNF developers. FPs will benefit from the pay-as-you-earn model, an
extension of pay-as-you-go in which the VNF provider will pay a percentage of the
revenue received. Bills to the FPs will be issued at the end of the life of the use of the
service and at the end of every billing cycle. Therefore FPs will be able to advertise
their VNFs in T-NOVA Marketplace for free, and based on the pay-as-you-earn model
they will pay to the SP only when they get incomes for their VNFs.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 40

3.2.2. Billing for Network Services

The same four billing models, as for the case of VNFs billing, were considered for
network services billing: Licensing, subscription, Pay-As-You-Go and revenue sharing.

After studying all the possibilities, licensing, subscription and revenue sharing were
discarded and PAYG remains as the ideal billing model for network services. The
above statement is justified by the following arguments:

• Revenue sharing is unviable, due to the fact that the customer (which is the
stakeholder to be billed in this case) pays for the service and does not receive
any economic revenue out of it.

• Licensing method is discarded for the same reasons as for the VNFs case. One
customer is unlikely to purchase more than one instance of the same service;
therefore, in a real life scenario for this use case, license equals PAYG.

• Subscription: Same reasoning can be applied to this case; a customer
subscribed to a service implies a closed period of use (renewable) but if the
customer decides to stop using the service, the remaining time until the end
of the period will be charged anyway. In the best case, the subscription end of
period will coincide with the end of the use and that equals, again, to PAYG
model.

3.2.3. Workflow

The workflow has been divided in four stages as it would happen in a real scenario:
The VNFs creation, Service definition, Service purchase and start, Service lifecycle.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 41

Figure 3-1 Accounting and billing workflow sequence diagram

1. The FP defines a new VNF from the dashboard (with different flavours).
1.1. The FP selects the billing model: PAYG or RS:

1.1.1. PAYG: The FP specifies a price per period (e.g. 1€/h). Since PAYG is
indicated for short periods, the default billing cycle will be 1 month but
at the previous rate.

1.1.2. RS: The FP indicates only a percentage (%). The FP will receive the
specified % off the earnings of the SP (in the Service where that VNF is
used) for the use of one instance of the VNF.

1.2. The FP defines the SLA: metrics to be monitored, violations and penalties and
discounts associated to those, to be taken into account in the billing in case
the SLA is unmet.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 42

2. The SP defines a Service and for that, needs to purchase VNFs (it will be initially a
reservation, as he will not be paying for them until they are used). The purchase
of the VNFs is done by means of brokering process between the SP and the FPs in
order to get the best VNF available in the Marketplace that suits the desires and
at a minimum price.
2.1. SP indicates the payment method for the service. PAYG.

2.1.1. SP indicates a billing period, a price for that period, and a set up price.
Ideal for short periods of time (less than 1 day).

2.2. SP defines the SLA just like the FP did before.

3. The Service is purchased by a customer.
3.1. Purchase orders (service and VNFs involved) are sent to the Accounting

module along with billing related information: instance numbers, pricing,
payment methods and timestamp for tracking purposes.

4. Service and VNFs are running
4.1. SLA information is passed to the Billing module via the Accounting module in

a loop until the customer decides to terminate the service.
4.2. Billing module receives prices, periods, penalties, and discounts that help

build a bill.
4.3. The user can consult the bill of the services consumed (plus billing related

information like earnings) which is issued every month.
5. Service termination

5.1. SLAs are stopped and instances released.

3.3. Architecture

3.3.1. Overview

Figure 3-2 shows in green where the Accounting and Billing modules are located
within the Marketplace architecture.

Figure 3-2 Accounting and billing modules in T-NOVA architecture

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 43

The Billing module is an external solution not custom-made for T-NOVA, therefore,
an Accounting module was necessary to provide a gateway between the Billing and
the rest of the system. It keeps a record of all the movements in the system that has a
potential impact in the billing: when a service is instantiated, when is terminated,
billing models and pricing. It also serves as a bridge between the orchestrator and the
marketplace since it’s the only one aware of the instance numbers and the associated
SLA contracts as well as the users involved, providing the dashboard information
about the running instances and their SLA.

3.3.2. Accounting

The accounting module is in charge of registering all the business relationships and
events (subscriptions, SLA evaluations and usage) that will be needed for billing,
being the the intermediate component between the billing module and the rest of
the system:

- Provides the billing module all the information it needs.

- Keeps a track of the instances (services and VNFs)

Figure 3-3 Accounting module interfaces

The Accounting module is created as a microservice for the marketplace and has
interactions with several other microservices and entities:

Service
Selection

Service selection introduces the starting information in the
accounting once there is a confirmation from the Orchestrator that
the service has been successfully instantiated.

Stakeholders Ids, Instance Id, product Id, product type, SLA
agreement, updated pricing information.

SLA module

Accounting creates the agreements in the SLA module based on the
pre-created templates.

Extracts SLA related information on billing module request: Penalties
and violations.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 44

Billing

Sends notification of the relevant billing events to the billing module:
service start/stop.

Sends (on request) all the SLA information that is needed for an
appropriate billing.

Orchestrator
Receives notification of any change in the status of a service and
modifies it accordingly.

AA
All communications need to be secure. For the marketplace
communications we use JWT and by means of the AA we can validate
each request.

Dashboard

Sends the list of running instances and VNFs to be shown and
monitored in the dashboard.

Sends (on request) SLA information to complement the service/VNF
monitoring.

Table 3-1 Accounting module interfaces

3.3.3. Billing

Billing forms an integral part of the T-Nova Marketplace. Not only enables the service
provider to charge and bill the customers for consumption of the services offered
through the marketplace, but also aids in sustaining the FP ecosystem by enabling
the revenue sharing between the SP and the FPs. The billing module being used in
this project extends the generic rating-charging-billing (RCB) framework Cyclops [36],
the development of which started in FP7 project Mobile Cloud Networking [37], and
whose functionalities are being extended to support the marketplace and T-NOVA
requirements.

The billing module (from here on referred as Cyclops) design is influenced by the
micro-services design pattern wherein functionally independent pieces are created as
a service with clear REST API interfaces to allow inter-service data exchange and
communication. The modules by design are part of a distributed deployment wherein
each service can be deployed on the same host or on separate hosts depending on
the operational optimization goals. Having a micro-service design also allows for
maximum reuse of the modules.

Cyclops’ prominent micro-services are:

• Usage data records generation service
• Rating and charging micro-service
• Billing (bill generation and management) micro-service
• Messaging service
• Authentication and authorization module

The linkages and relationship among these micro-services are shown below in figure
xx. The figure is created using the functional modelling concepts (FMC).

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 45

Figure 3-4 Cyclops micro-services architecture

3.3.3.1. Usage data record (UDR) generation micro-service

Usage data record micro-service is responsible for the collection of usage data from
various sources. For OpenStack clouds, it has a built in driver, which depending on
the configured monitoring intervals collects relevant metered data from Ceilometer
service. For other services, the data points are processed from the messaging service
queues. In T-NOVA, the accounting module sends relevant billing events for all
services to the Cyclops messaging service.

Figure 3-5 UDR micro-service architecture

UDR micro-service also constructs the usage records for every user periodically. And
it provides data query API for other services. The data stored in UDR allows for rich
data visualization and analytics.

3.3.3.2. Rating, charging (RC) micro-service

The RC micro-service is responsible for determining the correct rate for any resource
type depending on the business rules, or billing model. In T-NOVA, for each service,
the Accounting module keeps track of agreed billing and revenue sharing models for
each customer. Cyclops RC service utilizes the Accounting APIs to get the models and

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 46

generates the rate data accordingly. It also processes the udr-records and transforms
into charge-records (CDRs) periodically for each user.

Figure 3-6 RC micro-service architecture

3.3.3.3. Billing micro-service

The billing micro-service in Cyclops aggregates all the CDRs for a given duration and
generates the bill data. It also processes exceptions such as SLA violations and any
promotional rules such as coupons and discounts before generating the bill.

Figure 3-7 Billing micro-service architecture

3.3.3.4. Cyclops messaging service

Cyclops messaging allows external (non-natively supported) services to send relevant
billing data into the framework for further processing into a unified billing strategy.
The framework is capable of creating separate messaging queues for different data
sources. The Accounting module sends the billing events to one such queue.

3.3.3.5. Authentication and authorization module

The micro-services authorize communication with each other through the auth-n/z
module. T-Nova Gatekeeper service provides authorization and authentication service
to Cyclops.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 47

3.4. Implementation

3.4.1. Overview

The accounting module and the billing one are separate microservices. The
accounting is developed entirely in python and the billing module in java. Both
expose a RESTful API for intermarketplace communication.

3.4.2. Accounting

The accounting module is created to satisfy the needs of the billing module and to
facilitate its integration with the rest of the T-NOVA system. Due to this, there wasn’t
any existing similar software in the market we could use, so a custom made one had
to be developed.

The Accounting module implements a RESTful API, following the guidelines in the
Marketplace

3.4.2.1. Information model

Based on the requirements, the information the Accounting module has to store to
be able to provide suitable results is shown in the next table:

Id Internal id of the Accounting module

productType It can be a “ns” or “vnf”.

instanceId Id of the instance provided by the Orchestrator once the
product is instantiated.

productId Id of the product in the original store (NFStore or BSC).

agreementId Id of the SLA contract in the SLA module.

relatives In case the entry represents a function, this field would be the
instance number of its father service. In case it’s a service, it
would represent the list of instance numbers of the VNFs that
compose the service.

flavour Flavour picked by the client among the offered ones in the
original descriptor.

startDate Timestamp of the product instantiation.

lastBillDate Date and time when the last bill was generated.

providerId Provider that offers the product.

clientId Client that makes use of the product.

status Current status of the instance in the system (“running” |
“stopped”)

billingModel PAYG or RS

period Base period for the billing.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 48

priceUnit Currency (typically “EUR”)

periodCost Price per period.

setupCost Price of setting up the service or VNF.

renew In case the subscription billing model is introduced, this field
represents whether the customer wants to renew the service
at the end of the period or not.

dateCreated Date and time the entry was created in the Accounting
module.

dateModified Date and time the entry was modified. Used to know when
there is a change in the status.

Table 3-2 Accounting module information model

 This information is serialized in JSON format and the Accounting module offers
different serializes for the external modules to extract the information they consider
enough and not having to deal with the whole set.

3.4.2.2. License

The code of the module is released under Apache 2 license.

3.4.3. Billing

After a thorough review of relevant technologies and billing platforms available for
reuse in the T-NOVA project, it was found that no suitable open-source framework
had support for multi-actor scenarios which is envisioned in this project. The closest
framework with necessary features was Cyclops, which was selected for further
feature-extension and use in the T-Nova marketplace. The results of technology
options evaluated can be found in [2].

3.4.3.1. UML Class diagrams of micro-services

The UML class diagrams below shows the implementation details of each micro-
services. The framework is majorly implemented in Java as web-services which are
deployed in tomcat containers.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 49

(a) UDR micro-service class diagram

Figure 3-8 UML class diagram (split view) for UDR micro-service

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 50

The figure above shows the UML class diagram for the classes that are part of UDR
micro-service. The figure is a split view representation as the single image was too
big for including in this document.

(b) RC micro-service class diagram

Figure 3-9 UML class diagram for rc micro-service

Figure 3-9 shows the implemented class UML diagram for the rating and charging (rc)
micro-service.

(c) billing micro-service class diagram

Figure 3-10 UML class diagram for billing micro-service

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 51

Figure 3-10 shows the UML class diagram for the billing micro-service. As can be seen
from the complexity of the micro-services, the UDR micro-service is most complex as
it has to ensure timely and correct data collection, as well as recovery workflows in
case of collection failures. Furthermore, correct persistence in the time-series
database ensures the later stages of the charging and bill generation works without
errors.

In contrast, the billing micro-service which currently only does data aggregation and
transformation into bill data is least complicate of all the core micro-services in
Cyclops framework.

3.5. Accounting module Integration

The Accounting module has interfaces to 3 other components of T-NOVA: Billing
module, Service Selection module, and Orchestrator. Each one with a set of REST API
calls.

The Accounting module microservice is deployed within the Marketplace docker
structure in a separate container. To be able to do so, the general docker-compose file
needs to have a section dedicated to the Accounting module and its dependencies. In
this case, the Accounting relies on a MySQL database that is deployed in a different
container (it is used by several modules) and we only have to create the database and
the tables. This is done in the MySQL initialisation file (see annex).

Once we have the dependencies fulfilled, it’s time to configure the container. A
dockerfile tells how to create the container and the script DockerStart.sh tells how to
execute it.

3.5.1. Accounting module API definition

The operations supported by the Accounting API are exposed to the following
modules: billing (T-Bi-Ac), service selection (T-Ac-SS), dashboard (T-Da-Ac), SLA (T-
Ac-Sl), orchestrator (T-Or-Ac).

3.5.1.1. Billing interface (T-Bi-Ac)

The following operations supported by the Accounting API are exposed to the billing.

(a) Details about the client's chosen billing model and specs. for the
queried service instance id. It returns a single element.

URL /service-billing-model/?clientId={clientId}&instanceId={serviceInstanceId}

Type GET

Headers Accept: application/json

Content-type: application/json

Parameters § clientId: Id of the user we want the billing model details of.
§ instanceId: String that univocally identifies a service instance.

Response § 200: With empty results when erroneous data is provided in the

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 52

code call.
§ 200: OK.

Request
example

GET /service-billing-model/?clientId=c1&instanceId=id02
HTTP/1.1

Response
example

{

 "startDate": "2015-06-10T00:00:00Z",

 "lastBillDate": "2015-06-10T00:00:00Z",

 "billingModel": "PAYG",

 "period": "P1D",

 "priceUnit": "EUR",

 "periodCost": 1.5,

 "setupCost": 2.0

}

Table 3-3 Accounting API operation to get details about the client's billing model

(b) Retrieve the list of all active services the user is using.

URL / service-instance-list/?clientId={clientId}

Type GET

Headers Accept: application/json

Content-type: application/json

Parameters § clientId: Id of the user from whom we will get the list of purchased
and active services (optional).

Response
code

§ 200: With empty results when erroneous data is provided in the
call.

§ 200: OK.

Request

example

GET /service-instance-list/?clientId=c1 HTTP/1.1

Response
example

[

 {

 "id": 11,

 "instanceId": "id19",

 "productId": "s2",

 "agreementId": "vnf3a2971d0-2eae-11e5-a2cb-0800200c9a6
6calls5k",

 "relatives": "id04",

 "productType": "ns",

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 53

 "flavour": null,

 "startDate": "2015-06-10T00:00:00Z",

 "lastBillDate": "2015-06-10T00:00:00Z",

 "providerId": "p1",

 "clientId": "c1",

 "status": "running",

 "billingModel": "PAYG",

 "period": "P1D",

 "priceUnit": "EUR",

 "periodCost": 1.5,

 "setupCost": 2.0,

 "renew": false,

 "dateCreated": "2015-07-28T14:36:14Z",

 "dateModified": "2015-10-08T09:21:28Z"

 }

]

Table 3-4 Accounting API operation to get the list of all active services for a user

(c) Retrieve the list of all VNFs purchased by a particular provider (client).

URL /vnf-list/?clientId={client_id}

Type GET

Headers Accept: application/json

Content-type: application/json

Parameters § clientId: Id of the user for whom we will get all the purchased VNFs.

Response
code

§ 200: With empty results when erroneous data is provided in the
call.

§ 200: OK.

Request

example

GET /vnf-list/?clientId=p1 HTTP/1.1

Response
element
example

 {

 "id": 1,

 "instanceId": "id01",

 "productId": "vnf1",

 "agreementId": "s1vnf2_4",

 "relatives": "id02",

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 54

 "productType": "vnf",

 "flavour": null,

 "startDate": "2015-06-10T00:00:00Z",

 "lastBillDate": "2015-06-10T00:00:00Z",

 "providerId": "f1",

 "clientId": "p1",

 "status": "stopped",

 "billingModel": "PAYG",

 "period": "P1D",

 "priceUnit": "EUR",

 "periodCost": 1.5,

 "setupCost": 2.0,

 "renew": true,

 "dateCreated": "2015-06-11T13:29:16Z",

 "dateModified": "2015-11-03T10:53:40Z"

 }

Table 3-5 Accounting API operation to get the list of all VNFs purchased by a particular
provider

(d) Details of the revenue sharing model between SP and FP for the given
VNF instance.

URL /vnf-billing-model/?spId={user_id}&instanceId={VNF__instance_id}

Type GET

Headers Accept: application/json

Content-type: application/json

Parameters § spId: Id service provider that purchased the VNF.
§ instanceId: Id of the VNF instance we need the billing model of.

Response
code

§ 200: With empty results when erroneous data is provided in the
call.

§ 200: OK.

Request
example

GET /vnf-billing-model/?spId=p1&vnfId=vnf2 HTTP/1.1

Response
element
example

 {

 "startDate": "2015-06-16T00:00:00Z",

 "lastBillDate": "2015-06-25T00:00:00Z",

 "billingModel": "PAYG",

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 55

 "period": "P1D",

 "priceUnit": "EUR",

 "periodCost": 1.0,

 "setupCost": 1.0

 }

Table 3-6 Accounting API operatio to get details of the revenue sharing model between
SP and FP for the given VNF instance

(e) List of all sla-violations for a given service instance for the queried time
window and a give metric name.

URL /sla/service-violation/?instanceId={service_instance_id}&metric=
{metric_name}&start={time-date}&end={time-date}

Type GET

Headers Accept: application/json

Content-type: application/json

Parameters § instanceId: Id of the service instance we want to obtain the SLA
violations from.

§ metric: Metric name, for filtering purposes. (optional)
§ start: Starting date of the SLA violations time frame. (optional)
§ end: Ending date of the SLA violations time frame. (optional)

Response
code

§ 200: With empty results when erroneous data is provided in the
call.

§ 500: There is a connection problem between the Accounting and
the SLA modules.

§ 200: OK.

Request
example

GET /sla/service-violation?instanceId=ids101&metric
=juanitoservice6&start=2015-11-03T15:00:30CET&end=2015-11-
03T17:00:30CET HTTP/1.1

Response
element
example

 {

 "agreementId": "serviceids101",

 "definition": {

 "expression": "5",

 "type": "discount",

 "validity": "P1D",

 "unit": "%"

 },

 "uuid": "8e440f6b-b5e0-4231-acf8-7ebc9d1d5e66",

 "violation": {

 "kpiName": "juanitoservice6",

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 56

 "actualValue": "0.43127626083203485",

 "expectedValue": "juanitoservice6 GT 0.7"

 },

 "datetime": "2015-11-03T16:10:30CET"

 }

Table 3-7 Accounting API operation to get the list of all sla violations for a service

(f) List of all sla-violations for a given VNF instance for the queried time
window and a give metric name.

URL /sla/vnf-violation/?instanceId={vnf_instance_id}&metric=
{metric_name}&start={time-date}&end={time-date}

Type GET

Headers Accept: application/json

Content-type: application/json

Parameters § instanceId: Id of the VNF instance we want to obtain the SLA
violations from.

§ metric: Metric name, for filtering purposes. (optional)
§ start: Starting date of the SLA violations time frame. (optional)
§ end: Ending date of the SLA violations time frame. (optional)

Response
code

§ 200: With empty results when erroneous data is provided in the
call.

§ 500: There is a connection problem between the Accounting and
the SLA modules.

§ 200: OK.

Request
example

GET /sla/vnf-violation?instanceId=idf51&start=2015-11-
03T15:00:30CET&end=2015-11-03T17:00:30CET&metric=pepitovnf5
HTTP/1.1

Response
element
example

 {

 "agreementId": "vnfidf51",

 "definition": {

 "expression": "5",

 "type": "discount",

 "validity": "P1D",

 "unit": "%"

 },

 "uuid": "5eaf2fa8-e533-4f76-8e78-cf7c3cce6b27",

 "violation": {

 "kpiName": "pepitovnf5",

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 57

 "actualValue": "0.16491713356365545",

 "expectedValue": "pepitovnf5 GT 0.5"

 },

 "datetime": "2015-11-03T16:10:30CET"

 }

Table 3-8 Accounting API operation to get the list of all sla-violations for a VNF

(g) List of all active services that use the given VNF.

URL /service-list/?vnfId={vnf_id}

Type GET

Headers Accept: application/json

Content-type: application/json

Parameters § vnfId: Id of the VNF we want to know in how many services it has
been used (optional).

Response
code

§ 200: With empty results when erroneous data is provided in the
call.

§ 200: OK.

Request
example

GET /service-list/?vnfId=vnf5 HTTP/1.1

Response
element
example

 {

 "id": 25,

 "instanceId": "ids100",

 "productId": "s5",

 "agreementId": "s1vnf2_4",

 "relatives": "idf50",

 "productType": "ns",

 "flavour": null,

 "startDate": "2015-10-08T07:09:19Z",

 "lastBillDate": "2015-10-08T07:09:19Z",

 "providerId": "p5",

 "clientId": "c5",

 "status": "running",

 "billingModel": "PAYG",

 "period": "P1D",

 "priceUnit": "EUR",

 "periodCost": 1,

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 58

 "setupCost": 2,

 "renew": false,

 "dateCreated": "2015-10-08T07:09:19Z",

 "dateModified": "2015-10-08T07:09:19Z"

 }

Table 3-9 Accounting API to get the list of all active services that use the given VNF

3.5.1.2. Service Selection interface (T-Ac-SS)

The following operations supported by the Accounting API are exposed to the service
selection module.

(a) List of all entries in the Accounting system or a single one if the
parameter accountId is present.

URL /accounts/{accountId}

Type GET

Headers Accept: application/json

Content-type: application/json

Parameters § accountId: Id of the accounting entity we want to retrieve
(optional).

Response
code

§ 200: With empty results when erroneous data is provided in the
call.

§ 404 - Not found: when the provided accountId does not exist in the
database

§ 200: OK.

Request
example

GET /accounts/11 HTTP/1.1

Response
element
example

{

 "id": 11,

 "instanceId": "id19",

 "productId": "s2",

 "agreementId": "vnf3a2971d0-2eae-11e5-a2cb-0800200c9a66cal
ls5k",

 "relatives": "id04",

 "productType": "ns",

 "flavour": null,

 "startDate": "2015-06-10T00:00:00Z",

 "lastBillDate": "2015-06-10T00:00:00Z",

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 59

 "providerId": "p1",

 "clientId": "c1",

 "status": "running",

 "billingModel": "PAYG",

 "period": "P1D",

 "priceUnit": "EUR",

 "periodCost": 1.5,

 "setupCost": 2,

 "renew": false,

 "dateCreated": "2015-07-28T14:36:14Z",

 "dateModified": "2015-10-08T09:21:28Z"

}

Table 3-10 Accounting API to get the list of all entries in the Accounting system or a
single one if the parameter accountId is present	

(b) Create a new accounting entry.

URL /accounts/

Type POST

Headers Accept: application/json

Content-type: application/json

Parameters

Response
code

§ 400 - Bad request: when the body in the request is not well formed
or when there is a problem with the SLA agreement creation.

§ 408 - Request Timeout: when there is a problem with the status
message queue.

§ 201: Created.

Request
example

POST /accounts/ HTTP/1.1

POST item
example

{

 "instanceId": "id19",

 "productId": "s2",

 "agreementId": "vnf3a2971d0-2eae-11e5-a2cb-0800200c9a66cal
ls5k",

 "relatives": "id04",

 "productType": "ns",

 "flavour": “silver”,

 "providerId": "p1",

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 60

 "clientId": "c1",

 "status": "running",

 "billingModel": "PAYG",

 "period": "P1D",

 "priceUnit": "EUR",

 "periodCost": 1.5,

 "setupCost": 2,

 "renew": false

}

Table 3-11 Accounting API operation to create a new entry

(c) Update an existing accounting entry.

The content in the body will overwrite the content of the resource. The dateModified
field will be updated with the current time.

URL /accounts/{accountId}

Type PUT

Headers Accept: application/json

Content-type: application/json

Parameters § accountId: Id of the accounting entity we want to update.

Response
code

§ 400 - Bad request: when the body in the request is not well formed.
§ 404 - Not found: when the provided accountId does not exist in the

database.
§ 200: OK.

Request
example

PUT /accounts/11 HTTP/1.1

PUT item
example

{

 "flavour": “gold”

}

Table 3-12 Accounting API operation to update an existing entry

(d) Delete an existing accounting entry.

URL /accounts/{accountId}

Type DELETE

Headers Accept: application/json

Content-type: application/json

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 61

Parameters § accountId: Id of the accounting entity we want to delete.

Response
code

§ 400 - Bad request: when the body in the request is not well formed.
§ 404 - Not found: when the provided accountId does not exist in the

database.
§ 204: No content (OK).

Request
example

DELETE /accounts/11 HTTP/1.1

Table 3-13 Accounting API operation to delete an existing accounting entry

3.5.1.3. Orchestrator interface (T-Or-Ac)

The following operations supported by the Accounting API are exposed to the
orchestrator.

(a) Update the status of a service given its instanceId and the new status.

The status of the involved functions will be updated automatically to the new one.

URL /servicestatus/{ns_instance}/{new_status}/

Type PUT

Headers Accept: application/json

Content-type: application/json

Parameters § ns_instance: Id service instance we want to change the status.
§ new_status: name of the status.

Response
code

§ 400 - Bad request: when the body in the request is not well formed.
§ 404 - Not found: when the provided accountId does not exist in the

database.
§ 408 - Request Timeout: when there is a problem with the status

message queue.
§ 200: OK.

Request
example

PUT /servicestatus/id09/stopped/ HTTP/1.1

Table 3-14 Accounting API operation to update the status of a service given its
instanceId and the new status

3.5.1.4. Dashboard interface (T-Da-Ac)

The following operations supported by the Accounting API are exposed to the
Dashboard.

(a) Retrieve SLA related information to show in the dashboard given the
userId and the wheter you want to retrieve VNFs or network services.

URL /sla-info/?clientId={clientId}&kind={ns|vnf}

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 62

Type GET

Headers Accept: application/json

Content-type: application/json

Parameters § clientId: Id of the user that is using the network service or the VNF.
§ kind: It can take 2 values: ns | vnf.

Response
code

§ 400 - Bad request: when the body in the request is not well formed.
§ 500: There is a connection problem between the Accounting and

the SLA modules.
§ 200: OK.

Request
example

GET /sla-info/?clientId=c1&kind=ns HTTP/1.1

Response
example

[

 {

 "productId": "service6",

 "productType": "ns",

 "clientId": "c1",

 "providerId": "p6",

 "SLAPenalties": 35,

 "agreementId": "serviceids101",

 "dateCreated": "2015-10-08T07:31:37Z",

 "dateTerminated": "2015-12-15T17:26:45.071444"

 }

]

(b) Retrieves the list of all running services the user (customer) is using.

URL /servicelist/{userId}/

Type GET

Headers Accept: application/json

Content-type: application/json

Parameters § userId: Id of the user for whom we want to retrieve the service list.

Response
code

§ 400 - Bad request: when the body in the request is not well formed.
§ 200: OK.

Request
example

GET /servicelist/c1 HTTP/1.1

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 63

Response
example

[

 {

 "id": 2,

 "instanceId": "id02",

 "productId": "s1",

 "agreementId": "s1vnf2_4",

 "relatives": "id01, id03",

 "productType": "ns",

 "flavour": null,

 "startDate": "2015-06-11T00:00:00Z",

 "lastBillDate": "2015-06-11T00:00:00Z",

 "providerId": "p1",

 "clientId": "c1",

 "status": "running",

 "billingModel": "PAYG",

 "period": "P1D",

 "priceUnit": "EUR",

 "periodCost": 1.0,

 "setupCost": 1.0,

 "renew": true,

 "dateCreated": "2015-06-11T13:29:16Z",

 "dateModified": "2015-12-10T09:29:41Z"

 },

]

(c) Retrieves the list of all running VNFs the user (service provider) is using.

URL /vnflist/{userId}/

Type GET

Headers Accept: application/json

Content-type: application/json

Parameters § userId: Id of the user for whom we want to retrieve the service list.

Response
code

§ 400 - Bad request: when the body in the request is not well formed.
§ 200: OK.

Request GET /vnflist/p5 HTTP/1.1

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 64

example

Response
example

[

 {

 "id": 24,

 "instanceId": "idf50",

 "productId": "vnf5",

 "agreementId": "s1vnf2_4",

 "relatives": "ids100",

 "productType": "vnf",

 "flavour": null,

 "startDate": "2015-10-08T07:07:43Z",

 "lastBillDate": "2015-10-08T07:07:43Z",

 "providerId": "f5",

 "clientId": "p5",

 "status": "running",

 "billingModel": "PAYG",

 "period": "P1D",

 "priceUnit": "EUR",

 "periodCost": 1.0,

 "setupCost": 2.0,

 "renew": false,

 "dateCreated": "2015-10-08T07:07:43Z",

 "dateModified": "2015-10-08T07:07:43Z"

 }

]

Table 3-15 Accounting API operation to retrieve the list of all running VNFs the user
(service provider) is using

3.5.2. Calls to other APIs

In order to implement T-Ac-Sl it is the accounting the one that calls the SLA API
according to the definition provided in section 2.6.1.2.

3.6. Billing module integration

The Cyclops framework gets the billing events from the Accounting module.
Accounting module also provides the billing and revenue sharing models between

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 65

various actors. In turn, Cyclops allows for generation of billing and revenue sharing
reports for any desired time-period. The interaction between Cyclops and T-NOVA
Marketplace modules are shown in the Figure 3-11:

Figure 3-11 Cyclops and T-Nova Marketplace Module Interactions

The two prominent interfaces between Cyclops framework and external T-NOVA
modules are:

- Cyclops-Dashboard.
- Cyclops-Accounting

The billing microservice is deployed within the Marketplace docker structure in a
separate container. To be able to do so, the general docker-compose file needs to
have a section dedicated to the billing module and its dependencies.

Once we have the dependencies fulfilled, it’s time to configure the container. A
dockerfile tells how to create the container and the script DockerStart.sh tells how to
execute it.

3.6.1. Billing module API definition

The APIs that are relevant for integration with other modules of T-NOVA marketplace
are shown here. The definitions for the internal APIs can be found in the framework’s
GitHub WiKi page. The Cyclops framework is still undergoing significant changes to
incorporate all the T-NOVA requirements. The APIs described below are generally
stable, but minor modification in the light of implementation experiences in the
future can be expected. In such a case, the final API descriptions will be made
available in WP7 deliverables, and also as part of the code release documents.

3.6.1.1. Dashboard interface (T-Da-Bi).

The operations supported by the billing API are exposed to the dashboard (T-Da-Bi).

(a) Usage query API for getting user’s data

URL http://localhost:8080/udr/usage/users/{user_id}

Type GET

Headers x-auth-token : String

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 66

Parameters from : Date

to : Date

Response Code 200 : Success

Request None

Response {
 "userid": "49588f5cea984040bc05d871eff67d2f",
 "time": {
 "to": "2015-01-12 01:10:00",
 "from": "2015-01-12 01:01:00"
 },
 "usage": {
 "openstack": [
 {
 "name": "cpu_util",
 "columns": [
 "time",
 "sequence_number",
 "avg"
],
 "points": [
 [
 1421024460734,
 124666640001,
 74.31932
],
 [
 1421024460734,
 124666550001,
 0.7899716
]
]
 }
]
 }
}

Table 3-16 Billing API operation for getting user’s data

(b) Usage query API for particular resource / service id

URL http://localhost:8080/udr/usage/resources/{resource_id}

Type GET

Headers x-auth-token : String

Parameters from : Date

to : Date

Response Code 200 : Success

Request None

Response {
 "resourceid": "49588f5cea984040bc05d871eff67d2f",
 "time": {
 "to": "2015-01-12 01:10:00",

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 67

 "from": "2015-01-12 01:01:00"
 },
 "column": [
 "time",
 "mean",
 "userid"
],
 "usage": [
 [
 0,
 0,
 "46fe4a610a8b44948a5b61427b0b5ecd"
],
 [
 0,
 0,
 "49588f5cea984040bc05d871eff67d2f"
],
 [
 0,
 2.950836399999999,
 "99909daae8924e7a9b96cd964e9d64e3"
],
]
}

Table 3-17 Billing API operation to query for particular resource / service id

(c) Bill generation API for a particular customer

URL http://localhost:8080/billing/invoice

Type GET

Headers x-auth-token : String

Parameters Customerid: String

from : Date

to : Date

Response Code 200 : Success

Request None

Response {
 "time": {
 "to": "2015-06-15 23:59",
 "from": "2015-06-15 00:00"
 },
 "charge": {
 "columns": [
 "time",
 "sequence_number",
 "userid",
 "usage",
 "price",
 "resource"
],
 "points": [

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 68

 [
 1434361731726,
 413986240001,
 "f83aa92bc3c64a3497b334cc712b0491",
 5,
 15.84,
 "service-id-aaab-hg1562711-ahsbba"
],
 [
 1434361731726,
 413986230001,
 "f83aa92bc3c64a3497b334cc712b0491",
 37,
 124.4,
 "service-id-aaac-hg1562711-ahsbbs"
]
]
 }
}

Table 3-18 Billing API operation to generate bill for a particular customer

(d) Retrieves the earnings of a provider in between specified dates for all
the instances.

Note: The “totalViolations” field represents the total amount of violations that the
instance has done in this period of time as also represents all the discounts already
applied.

URL /billing/revenue?provider={provider}&from={from}&to={to}
Type GET
Headers Accept: application/json

Content-type: application/json
Parameters § provider: Id of the provider who we want to generate

the revenue report for. The provider can be either a Sprovider
or a FProvider
§ from: first date of the bill in format: yyyy-MM-dd
hh:mm:ss

§ to: last date of the bill in format: yyyy-MM-dd hh:mm:ss

Response
code

§ 200: With empty results when erroneous data is
provided in the call.
§ 200: OK.

Request
example

GET/billing/revenue?provider=p1&from=2016-01-
18%2009:34:00&to=2016-01-18%2009:42:59 HTTP/1.1

Response
example

{
 "provider": "p1",
 "from": "2016-01-18 09:34:00",
 "to": "2016-01-18 09:42:59",
 "revenues": [
 {
 "time": "2016-01-18T09:35:44Z",
 "instanceId": "id02",
 "provider": "p1",
 "price": 0.0024363425925925924,

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 69

 "priceUnit": "EUR",
 "discountValue": 0,
 "finalPrice": 0.0024363425925925924,
 "totalViolations": 0
 },
 {
 "time": "2016-01-18T09:40:43Z",
 "instanceId": "id02",
 "provider": "p1",
 "price": 0.0024363425925925924,
 "priceUnit": "EUR",
 "discountValue": 0,
 "finalPrice": 0.0024363425925925924,
 "totalViolations": 0
 }
]

}

Table 3-19 Billing API operation to retrieves the earnings of a provider in between
specified dates for all the instances

(e) Retrieves the bill of a specific user in between specified dates for all the
instances.

Note: The “totalViolations” field represents the total ammount of violations that the
instance has done in this period of time as also represents all the discounts already
applied.

URL /billing/bill?userId={userId}&from={from}&to={to}
Type GET
Headers Accept: application/json

Content-type: application/json
Parameters § userId: Id of the user we want to generate the bill for.

The user can either be a Customer or a SProvider
§ from: first date of the bill in format: yyyy-MM-dd
hh:mm:ss

§ to: last date of the bill in format: yyyy-MM-dd hh:mm:ss

Response
code

§ 200: With empty results when erroneous data is
provided in the call.
§ 200: OK.

Request
example

GET /billing/bill?userId=p1&from=2016-01-
18%2009:34:00&to=2016-01-18%2009:37:59 HTTP/1.1

Response
example

{
 "userId": "p1",
 "from": "2016-01-18 09:34:00",
 "to": "2016-01-18 09:37:59",
 "charges": [
 {
 "time": "2016-01-18T09:35:43Z",
 "instanceId": "id01",
 "provider": "f1",
 "price": 0.0029484953703703704,

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 70

 "priceUnit": "EUR",
 "discountValue": 0,
 "finalPrice": 0.0029484953703703704,
 "totalViolations": 0
 },
 {
 "time": "2016-01-18T09:35:44Z",
 "instanceId": "id03",
 "provider": "f1",
 "price": 0.0029484953703703704,
 "priceUnit": "EUR",
 "discountValue": 0,
 "finalPrice": 0.0029484953703703704,
 "totalViolations": 0
 }
]
}

Table 3-20 Billing API operation to retrieves the bill of a specific user in between
specified dates for all the instances

(f) Accounting interface

The accounting module is the main component that pushes all billing relevant data
into Cyclops framework for further processing using the Cyclops Messaging service.
The billing relevant events pertaining to a given service instance could be –

a) service-running,
b) service-stopped,
c) service-suspended,
d) service-resumed

Accounting module also enables Cyclops to get the agreed billing model and
revenue-sharing model data. Furthermore, it also makes the SLA violations and the
penalty model available to Cyclops for factoring in before the bills are generated.

3.6.2. Calls to other APIs

As part of the T-Bi-Ac the billing module calls the Accounting API according to the
definition provided in section 3.5.1.1.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 71

4. VALIDATION

4.1. Functional verification

To test the functionality of the SLA management, accounting and billing modules we
have created some sample VNFs and Network Services with real data to make it as
close to a real scenario as possible, trying to cover all the functionalities with one
example. Table 4-1 collects the results for this verification tests.

Functionality Action Call from Request to Verification Ok?

1 Providers
registration

Register FP, SP
and customer

Dashboard SLA mgmt. Verify the introduced
providers are in the SLA
management module
database

Yes

2 VNF
Templates
introduction

Create VNF
template based on
the VNFD and
send it to the SLA
management
module

Dashboard SLA mgmt. Check the SLA module
database for the template
and the logs to see there
has not been errors in the
process

Yes

3 Service
templates
introduction

Create NS
template based on
the NSD and send
it to the SLA
management
module

Service
selection

SLA mgmt. Check the SLA module
database for the template
and the logs to see there
has not been errors in the
process

Yes

4 VNFs and NSs
tracking

Create an entry for
the purchased
service and for
each of the
involved VNFs

Service
selection

Accounting Verify the service and all
the VNFs are present in
the accounting database
with all the necessary
information.

Yes

5 FP-SP
agreement
introduction

Fill up the fields in
the VNF template
that have changed
during the
negotiation
process and create
the agreement

Accounting SLA mgmt. Check the SLA module
database for the
agreement and the logs to
see there has not been
errors in the process

Yes

6 SP-Customer
agreement
introduction

Fill up the fields in
the NS template
that have changed
during the
negotiation
process and create
the agreement

Accounting SLA mgmt. Check the SLA module
database for the
agreement and the logs to
see there has not been
errors in the process

Yes

7 Start the
agreements

Once received the
service
instantiation order,
the SLA
agreements
corresponding to

Accounting SLA mgmt. Request the list of the
running agreements from
the SLA module and check
the ones we recently
started are on the list

Yes

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 72

the purchase of
the NS and the
VNFs within need
to be started as
well

9 “Start” event
introduction

Introduce the
events
corresponding the
start of the NS and
VNFs in the billing
event queue

Accounting Billing Request the list of events
in the billing queue and
verify the events we have
just created are present

Yes

9 Generate SLA
violations

Feed the SLA
management
module with
random
monitoring data
that should
generate a
number of SLA
violations

SLA mgmt. SLA mgmt. Request the list of
violations for the example
agreements we have
created and see if there
are any SLA penalties.

Yes

10 Stop the
service

Simulate a call
from the
orchestrator that
request the stop
of the service
instance

Orchestrator Accounting Verify in the accounting
module the status of the
service (and the involved
VNFs) is no longer
“running” and it’s
“stopped” now

Yes

11 “Stop” event
introduction

Introduce the
events
corresponding the
stop of the NS and
VNFs in the billing
event queue

Accounting Billing Request the list of events
in the billing queue and
verify the events we have
just created are present

Yes

12 Stop the
agreements

Stop the
assessment of the
SLA agreements
involved

Accounting SLA mgmt. Request the list of the
running agreements from
the SLA module and check
the ones we just stopped
are not on the list

Yes

13 Request SLA
penalties

Request a bill
generation for
some user

Billing Accounting Request for the list of all
SLA violations within the
queried time frame,
verification is the
discounts/penalties
reflected in the
bill/revenue-sharing-
report generated for the
user/function developer.

Yes

14 Request bill Request a bill
generation for
some user for a
given time frame

Dashboard Billing The response contains the
amount due for the
customer. The charge data
records can be verified in
the InfluxDB series.

Yes

15 Request
revenues
report

Make a call to the
billing module
with the function
provider ID and
the time frame

Dashboard Billing The response contains the
revenue share report
along with any penalties
for SLA violations. The
periodic reports can be

Yes

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 73

verified in the InfluxDB
series.

16 Show SLA
statistics

Request SLA
statistics for a
given NS or VNF,
running or
stopped

Dashboard Accounting See the charts drawn on
the screen

Yes

Table 4-1 SLA, accounting and billing verification

Further validation tests will be performed in T-NOVA under WP7 (Pilot integration
and field trials).

4.2. Requirements fulfilment

Following the successful execution of the aforementioned functional tests, Table 4-2,
Table 4-3 and Table 4-4 explain how the implemented and tested SLA, accounting
and billing frameworks respectively fulfill the requirements which were set in the
specification phase [1].

4.2.1. SLA management module requirements

Req.
id

Requirement
Name

Requirement Description Met Implementation

SLA.1 SLA
information
customer-SP
storage

The SLA management
module SHALL store all the
SLA agreements between
a customer and the SP for
each service.

YES SLA module stores in a MySQL database all the
agreements that are introduced by the
Customers (as agreement initiators)
automatically at the moment of the purchase by
means of the accounting module.

SLA.2 SLA
information
SP-FPs storage

The SLA management
module SHALL store all the
SLA agreements between
the SP and the FPs for
each VNF.

YES SLA module stores in a MySQL database all the
agreements that are introduced by the Service
provider (as agreement initiator) automatically at
the moment of the purchase by means of the
accounting module.

SLA.3 SLA –
orchestrator
interface

The SLA management
module SHALL be
connected to the
orchestrator to let it know
about the agreed SLA for
each service. (When the
SLA is not fulfilled the
orchestrator will have to
initiate the applicable
action, e.g. rescaling)

NO Due to implementation and execution efficiency,
these values are not provided by the SLA module
but are extracted from the VNFD and the NSD
directly.

SLA.4 SLA fulfilment
information
storage (from
the
orchestrator)

The SLA management
module SHALL store all the
information about SLA
fulfilment for eventual
compensations or
penalties for later billing.

YES All information related to the SLA fulfilment
generated by the SLA module is stored in the
internal database and it’s not deleted even if the
service is no longer in use.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 74

SLA.5 SLA –
accounting/bill
ing interface

The SLA management
module SHALL be
connected the
accounting/billing system
to let it know about
eventual compensations or
penalties when the SLA
has not been fulfilled for a
specific service.

YES The SLA module is queried about possible
penalties and associated discounts by the
accounting module by means of the exposed
REST API.

SLA.6 SLA
visualisation
by customer
and SP

The SLA management
module SHALL be
connected to the
Dashboard to allow a
customer and SP to
visualize SLA fulfilment
information when
requested.

YES Due to the fact that the dashboard is not aware
of the agreement IDs, this request will have to be
done through the accounting module.

SLA.7 SLA procedure
mechanisms

The SLA management
module SHALL provide
mechanisms to get an
agreement presented and
agreed between the
parties

YES The SLA module exposes a REST API for this
matter.

Table 4-2 SLA requirements fulfilment

4.2.2. Accounting module requirements

Req.
id

Requirement
Name

Requirement Description Met Implementation

Ac.1 Accounting
notification -
VNF starts

The accounting system
SHALL know if a VNF or
network service starts
correctly.

YES The accounting is notified by the orchestrator
(through the service selection module) when a
service or a VNF starts by means of a REST API
call.

Ac.2 Resources usage
for billing

The accounting system
SHALL store all the
information about
resources usage by each
service for later billing
purposes.

NO Due to technical project decisions, the use of
resources doesn’t constitute a billable item,
therefore, no information about them is stored in
the accounting module.

Ac.3 Price
information for
billing

The accounting system
SHALL store the
information about prices
agreed by each customer
for later billing purposes.

YES All the information related to the pricing for the
usage of a service or VNF is stored in the
accounting database and is sent to the billing
module on request.

Ac.4 SLA billable
items

The accounting system
SHALL be aware of the
information about SLA
fulfilment for billing
compensations or
penalties.

YES The accounting system queries the SLA module
for penalties and compensations due to SLA
non-fulfilment on billing module request.

Ac.5 Bill cycle The accounting module
SHALL be able to provide
the billing related
information for any given
period for each customer,

YES The accounting module is able to provide billing
information for any given period as the dates of
the service and VNF lifecycle events (start, stop)
are stored and a REST API is set for this purpose.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 75

and SP.

Ac.6 Components
relationships

The accounting system
SHALL store the necessary
information of the service
and VNF instances,
agreements, providers and
customers.

YES Every entry in the accounting system contains
details of the client and provider involved in a
purchase, the SLA they agreed on and the dates
of the events occurred during the service or VNF
life. All this information is available on a REST API
interface.

Table 4-3 Accounting requirements fulfilment

4.2.3. Billing module requirements

Req.
id

Requirement
Name

Requirement Description Met Implementation

Bil.1 Price
information for
customer billing

The billing module SHALL
receive the information
about prices agreed by
each customer for each
service.

YES The billing module receives all the billing related
information from the accounting module (where
it’s stored) by means of a REST API request.

Bil.2 Price
information for
SP billing

The billing module SHALL
receive the information
about prices agreed by
each SP for each VNF.

YES The billing module receives all the billing related
information from the accounting module (where
it’s stored) by means of a REST API request.

Bil.3 Bill issuing The billing module SHALL
issue bills when the
customer's bill cycle
finishes or service pay-as-
you-go finishes and stores
them within the customer
profile.

YES The billing module is ready to issue bills on every
required period but due to system conveniences,
the bills will be issued every 1st day of the month
and will contain the usage of all the services and
VNFs in the last month.

Bil.4 Billing-
accounting
interface

The billing SHOULD
receive all the information
needed for billing from the
accounting module.

YES The billing module receives all the billing related
information from the accounting module (where
it’s stored) along with the SLA unfulfilments, the
lifecycle events (to know whether a service or a
VNF has been stopped for a period of time) and
the users involved in the transaction by means of
a REST API request.

Bil.5 Billing-User
management
interface

The billing module SHALL
get the specific user
related information along
with the information
received from the
accounting system for
billing purposes.

YES The billing module retrieves the information
from a specific user from the UMAA module and
the billing related information from the
accounting module to compose a bill.

Bil.6 Billing-
Dashboard
interface

The billing module
SHOULD provide
information (statistics and
graphs) to the dashboard.

YES Information related to the cost, the usage of a
service or VNF and the fulfilment of the SLAs are
provided to the dashboard on request.

Table 4-4 Billing requirements fulfilment

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 76

5. CONCLUSIONS

This document reports the outputs of T-NOVA Task 6.4 – SLAs and billing, which
aimed to design and implement the all the necessary components in the T-NOVA SLA
and billing frameworks.

Based on the State of Art survey performed in relation to the SLA (standardization
bodies and other projects) and based on the requirements elicitation in the
specification phase [1], the following main decisions has been taken to implement T-
NOVA SLA framework which have been detailed in this report:

- The SLA T-NOVA framework is characterized by two SLA levels, corresponding to
the two commercial iteractions in T-NOVA Marketplace:
o Between FPs-SP and, SLA associated to standalone VNFs.
o Between SP and the Customer, associated to Network Services (NSs).

- In relation to standardization bodies, ETSI NFV requirements for SLA have been
considered as input for T-NOVA SLA framework, though not a proper complete
SLA business framework has been specified by ETSI so far. TMForum gives some
insights about metrics and SLA relations in cloud environment that has also been
taken into account. However, T-NOVA specification work was ahead of these two
standardization bodies so a potential contribution from T-NOVA was submitted
to ETSI and will be submitted to TMForum in the following months.

- T-NOVA SLA framework is WS-agreement compliance, as it has been identified
as the most complete and extended specification for SLA procedure. All the
surveyed research projects in cloud environment have followed this WS-
Agreement though there is no research project in the state of the art providing
SLA framework for NFV ecosystem as T-NOVA does.

- The SLA management module implemented in T-NOVA is an evolution of an
open source component used previously for cloud environment, being adapted
to NFV as well as to the two different SLA levels considered in T-NOVA.

Based on the State of Art survey performed in relation to the billing options (internet
commercial players, telco providers and other projects) and based on the
requirements elicitation in the specification phase [1], the following main decisions
has been taken to implement T-NOVA billing framework which have been detailed in
this report:

- Billing in T-NOVA is done for 2 different products according to the 2 commercial
relationships in T-NOVA ecosystem:
o The Service Provider (SP) acquires Virtual Network Functions (VNFs) from the

Function Providers (FPs).
o The Customer acquires Network Services (NSs) provided by Service Providers

based on the combination of VNFs previously purchased.
- After an exploratory work considering different options for billing mechanisms it

has been concluded that Pay-As-You-Go is the most generic and suitable model
to bill VNFs and Network Services in T-NOVA including an innovative Revenue
Sharing model between Service Provider and Function Providers. FPs will benefit

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 77

from the pay-as-you-earn model, an extension of pay-as-you-go in which the
VNF provider will pay a percentage of the revenue received.

- The T-NOVA billing framework has been designed to be composed by 2
modules:
o Accounting module: it keeps a record of all the movements in the system

that may have a potential impact in the billing: when a service is instantiated,
when is terminated, billing models and pricing. It also serves as a bridge
between the orchestrator and the marketplace getting the information about
the running instances and their SLA. It has been developed from scratch for
T-NOVA requirements.

o Billing module: it emits the bills based on the accounting information. The
billing module being used in T-NOVA extends the generic rating-charging-
billing (RCB) framework Cyclops [36], the development of which started in
FP7 MCN project [37], and whose functionalities have been extended to
support the T-NOVA requirements.

All the components in the T-NOVA Marketplace (including SLA, accounting and
billing) have been developed with a Software Oriented Architecture based on
microservices, in which each Marketplace component has been developed separately
(UML diagrams in this report) and communicates with the others by means of RESTful
APIs (documented in this report). This provides flexibility and scalability to the T-
NOVA Marketplace in case further functionalities may want to be added in the future
and also this also facilitated the development process by different developers in T-
NOVA.

For the integration of all the different components in the Marketplace Docker has
been selected; each microservice relies in a different container, and they are
integrated by means of Docker file that coordinates the integration.

It has been included in this report also some basic functional verification tests that
have been performed in order to validate the developments and check the
requirements fulfilments. Further validation tests will be done in the project within
the specific WP for that purpose.

The T-NOVA SLA, accounting and billing modules prototypes will be uploaded to
http://github.com/T-NOVA.

5.1. Future work

We have identified two main items that can be considered as future work for the SLA
and billing frameworks in T-NOVA:

- ETSI NFV approach use the Gold, Silver, Bronze notation for the definition of a
particular NS that is composed by a number of VNFs and a Connectivity Service,
which we use in T-NOVA to name a group of technical parameters for the SLA
specification. However that notation, as it is defined at the moment, does not
correspond to any particular principle/rule common to all the possible
compositions available in T-NOVA. The analogy that we can think is coming from
the relevant usage of the three color marker in networking. This will allow us as

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 78

future work to reach more accurate notion of the whole QoS offered for Network
Services that can be assured as part of the SLA, which is still a topic that need
further research in the SOTA. This issue comes due to QoS for Network Services
in NFV can be affected by many different factors: VNF software, compute,
storage and networking QoS.

- The possible second identified future work will be for the whole T-NOVA system
to consider offering the customer the possibility to suspend and resume a
service. This will impact consequently in the billing procedure and how this will
be considered in case the resources may be reserved or not for a specific paused
service.

Year 2016 in T-NOVA project will be devoted to the system integration and testing of
all its components, e.g. with the T-NOVA Orchestrator and Virtualized Infrastructure
Management. We do expect that system integration may detect some gaps or need
of fine tuning the interfaces. Moreover, testing the whole T-NOVA system can identify
some non-functional aspect that could suggest refining some part of the current
work. Also the complete implementation of T-NOVA Orchestrator, main component
interfacing T-NOVA Marketplace, is expected to be finalized by end of March. Then,
finally integration tests between Marketplace and Orchestrator should be done,
therefore refinements on the Marketplace could be needed later on, for example in
relation to the interfaces between monitoring system and SLA and accounting
modules.

5.1.1. 5G projects

T-NOVA SLA management module has been identified to be potentially extended to
multi Service Provider environment within 5GEx project [38]. This project aims to
build a sandbox to extend software networks in a multi-domain/operator
environment. 5GEx does not aim to implement a full marketplace, even billing aspects
are not in its scope, but SLA management issues should be part of the multidomain
orchestrator that 5GEx aims to build.

5.2. Contributions to standards

In relation to standardization bodies: ETSI NFV requirements for SLA has been
considered as input for T-NOVA SLA framework, though not a proper complete SLA
business framework has been specified by ETSI so far. TMForum gives some insights
about metrics and SLA relations in cloud environment that has also been taken into
account. However, T-NOVA specification work was ahead of these to standardization
bodies so a potential contribution was submitted to ETSI and will be submitted to
TMForum in the following months.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 79

6. ANNEXES

6.1. WS-Agreement

WS-Agreement specifies an xml structure to define agreements and templates, and
two layers interface of web services for operation. [39] contains a summary of the
specification.

The XML representation of an agreement or a template has the following structure:

<wsag:Agreement AgreementId="xs:string">
 <wsag:Name>xs:string</wsag:Name> ?
 <wsag:Context>
 wsag:AgreementContextType
 </wsag:Context>
 <wsag:Terms>
 wsag:TermCompositorType
 </wsag:Terms>
</wsag:Agreement>

The following describes the attributes and tags listed in the schema outlined above:

• /wsag:Agreement

This is the outermost document tag which encapsulates the entire agreement. An
agreement contains an agreement context and a collection of agreement terms.

• /wsag:Agreement/@AgreementId

This is a mandatory identifier of this particular version of the agreement. It must be
unique between Agreement Initiator and Agreement Responder. Through the effect
of extended negotiation mechanisms not defined in this specification, different
agreement documents MAY be regarded semantically as updated versions of an
existing agreement relationship, potentially having the same Name and being
exposed by the same Endpoint Reference. This id attribute helps agreement
responder and consumer uniquely identify the version currently in force. If an
agreement instance document is modified during the lifecycle of an Agreement
resource, the identifier MUST also be replaced with a new, unique identifier.

• /wsag:Terms

The terms of an agreement comprises one or more service definition terms, and zero
or more guarantee terms grouped using logical grouping operators.

The following is an example of an agreement:

<?xml version="1.0" encoding="UTF-8"?>
<wsag:Agreement xmlns:wsag="http://www.ggf.org/namespaces/ws-agreement"

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 80

 AgreementId="sample-agreement">

 <wsag:Name>Sample Agreement</wsag:Name>
 <wsag:Context>
 <wsag:AgreementInitiator>client-prueba</wsag:AgreementInitiator>
 <wsag:AgreementResponder>f4c993580-03fe-41eb-
8a21</wsag:AgreementResponder>
 <wsag:ServiceProvider>AgreementResponder</wsag:ServiceProvider>
 <wsag:ExpirationTime>2014-03-07T12:00:00</wsag:ExpirationTime>
 <wsag:TemplateId>template02</wsag:TemplateId>
 <sla:Service xmlns:sla="http://sla.atos.eu">sample-
service</sla:Service>
 </wsag:Context>
 <wsag:Terms>
 <wsag:All>
 <wsag:ServiceDescriptionTerms Name="SDT" ServiceName="ServiceName"/>
 <wsag:ServiceProperties Name="ServiceProperties"
ServiceName="ServiceName">
 <wsag:VariableSet>
 <wsag:Variable Name="availability" Metric="xs:double">
 <wsag:Location>metric1</wsag:Location>
 </wsag:Variable>
 </wsag:VariableSet>
 </wsag:ServiceProperties>
 <wsag:GuaranteeTerm Name="GT-availability">
 <wsag:ServiceScope ServiceName="ServiceName"/>
 <wsag:ServiceLevelObjective>
 <wsag:KPITarget>
 <wsag:KPIName>AVAILABILITY</wsag:KPIName>
 <wsag:CustomServiceLevel>
 {"constraint" : "availability BETWEEN (0.99, 1)"}
 </wsag:CustomServiceLevel>
 </wsag:KPITarget>
 </wsag:ServiceLevelObjective>
 </wsag:GuaranteeTerm>
 </wsag:All>
 </wsag:Terms>
</wsag:Agreement>

A template has basically the same structure, and the intention of templates is to serve
as base for new agreements. So, a procedure to create a new agreement for a
template could be:

1. Retrieve the template for a service. The template could have "prefilled" the
context element (excepting the consumer), the service properties, and the
guarantee terms.

2. Build an agreement xml using the template as a base, and filling the rest of
needed elements.

3. Initiate the negotiation.

The step 2 is domain-dependant, and it is recommended to add a domain factory
that encapsulates this workflow, but having a simpler interface. For example:

1. Retrieve the template for a service, and extract the properties and boundaries
for this service.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 81

2. Send the (consumer, templateId, properties, boundaries) in json format to the
domain service.

3. The domain service retrieves the template, builds the agreement and initiates
the negotiation.

To create templates for a service, it is recommended a similar procedure.

The SLA core implements a mechanism to facilitate this kind of factory, with the use
of IParsers. The project can provide a translator from a simple format to WS-
Agreement, so the inputs of agreements and templates to the SLA core are in this
simple format. This helps to reduce the complexity of WS-Agreement format.

The default implementation only allows a wsag:All term.

The default implementation does not handle the CreationContraints elements. It
should be handled in the suggested domain layer.

6.1.1. Context

The context describes some metadata about the agreement/template.

The specification is:

<wsag:Context xs:anyAttribute>
 <wsag:AgreementInitiator>xs:anyType</wsag:AgreementInitiator> ?
 <wsag:AgreementResponder>xs:anyType</wsag:AgreementResponder> ?
 <wsag:ServiceProvider>wsag:AgreementRoleType</wsag:ServiceProvider>
 <wsag:ExpirationTime>xs:DateTime</wsag:ExpirationTime> ?
 <wsag:TemplateId>xs:string</wsag:TemplateId> ?
 <wsag:TemplateName>xs:string</wsag:TemplateName> ?
 <xs:any/> *
</wsag:Context>

• /wsag:Context/wsag:AgreementInitiator

This optional element identifies the initiator of the agreement creation request.

• /wsag:Context/wsag:AgreementResponder

This optional element identifies the agreement responder, i.e. the entity that
responds to the agreement creation request.

• /wsag:Context/wsag:ServiceProvider

This element identifies the service provider and is
either AgreementInitiator or AgreementResponder. The default is
AgreementResponder.

• /wsag:Context/wsag:TemplateId

If a template was used to create an offer, the TemplateId in the Context must be set.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 82

• /wsag:Context/wsag:TemplateName

The template name must be included in an offer if the offer is based on a template

§ The default implementation handles sla:Service element (WS-Agreement
allows this kind of extensions), to identify the service provided in the
agreement, as the WS-Agreement allows several provider services to be in the
agreement.

§ The attribute ServiceName is present in the rest of elements in the agreement.
The value of this attribute specifies an individual service of the several ones
that may be inside an agreement/template, but is intended to only have
meaning inside the agreement. As the ServiceName does not identify a
service as known externally, the sla:Service element should be used for this
matter.

§ In the case of only one ServiceName per agreement, the ServiceName value is
a do not care value; it can have the same value as the sla:Service element, or
have a fixed value. It is a domain task to specify this.

6.1.2. Service description terms (SDT)

The Service Description Term describes the offered service. Its main purpose is to
describe the type of service to be provisioned in the case that this provision is made
in the SLA-system itself.

The definition is:

<wsag:ServiceDescriptionTerm
 wsag:Name="xs:string" wsag:ServiceName="xs:string">

 <xs:any> ... </xs:any>
</wsag:ServiceDescriptionTerm> +

The default implementation does not handle the service description terms, and as
such, the service must be provisioned externally.

The implementer may provide additional features handling the Service Description
Terms. For example, the SDT can be filled by the system with needed information
about the allocated resources, and only known after the allocation (e.g. IP).

6.1.3. Service references (SR)

A service reference points to a service. So, if the service provided in the agreement is
an external service, it may be referenced here. This way, the url/identifier/whatever
associated with a ServiceName attribute can be known. Refer to page 20 of the spec
for more details.

The definition is:

<wsag:ServiceReference
 wsag:Name="xs:string" wsag:ServiceName="xs:string">

 <xs:any> ... </xs:any>

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 83

</wsag:ServiceReference> +

The default implementation does not handle the service references.

6.1.4. Service properties (SP)

ServiceProperties are used to define measurable and exposed properties associated
with a service, such as response time and throughput.

<wsag:ServiceProperties
 wsag:Name="xs:string" wsag:ServiceName="xs:string">

 <wsag:VariableSet>
 <wsag:Variable wsag:Name="xs:string" wsag:Metric="xs:URI">
 <wsag:Location>xs:string</wsag:Location>
 </wsag:Variable> *
 </wsag:VariableSet>
</wsag:ServiceProperties> +

The service properties are a set of variables that are used in the guarantee terms
constraints. So, for example, if a constraint is : uptime > 90, there can be two service
properties: ActualUptime and DesiredUptime. And the constraint will be
ActualUptime > DesiredUptime.

The default implementation does not use the service properties this way. It does not
use the thresholds as service properties; only the actual metric.

The following is a sample of a service property being valid in the default
implementation:

<wsag:Variable Name="Uptime" Metric="xs:double">
 <wsag:Location>service-ping/Uptime</wsag:Location>
</wsag:Variable>

§ The name of the variable is used in the Guarantee Terms.
§ The optional metric attribute refers to a schema type that the value of the

variable must fulfil.
§ The location is defined in the spec as "the value of this element is a structural

reference to a field of arbitrary granularity in the service terms - including
fields within the domain-specific service descriptions". According to WSAJ
Guarantee Evaluation Example [39], this is interpreted as the place where to
find the actual value of the metric, referencing to an element in the SDT with,
e.g., xpath.

In the default implementation, as the SDTs are not handled, the location is ignored.

Alternative implementations may interpret the location as the "abstract location of
the metric". So, the location can be used if the monitoring module expects a name
different than the metric name to return measures.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 84

6.1.5. Guarantee terms (GT)

The guarantee terms hold the constraints that are being enforced in the service
exposed in this agreement.

The definition is:

<wsag:GuaranteeTerm Name="xs:string" Obligated="wsag:ServiceRoleType">
 <wsag:ServiceScope ServiceName="xs:string">
 xs:any ?
 </wsag:ServiceScope> *
 <wsag:QualifyingCondition> xs:anyType </wsag:QualifyingCondition> ?
 <wsag:ServiceLevelObjective>
 ...
 </wsag:ServiceLevelObjective>
 <wsag:BusinessValueList>
 ...
 </wsag:BusinessValueList>
</wsag:GuaranteeTerm>

• /wsag: GuaranteeTerm/@wsag:Name

The mandatory name attribute (of type xs:string) represents the name given to a
guarantee. Since an Agreement MAY encompass multiple GuaranteeTerms each term
SHOULD be given a unique name.

• /wsag:GuaranteeTerm/@wsag:Obligated

This attribute defines, which party enters the obligation to the guarantee term. The
wsag:ServiceRoleType can be either ServiceConsumer or ServiceProvider. The
default implementation does take this attribute into account, and always consider it
as ServiceProvider.

• /wsag:GuaranteeTerm/wsag:ServiceScope

A guarantee term can have one or more service scopes. A service scope describes to
what service element specifically a guarantee term applies. It contains a ServiceName
attribute and any other XML structure describing a substructure of a service to which
the scope applies. For example, a performance guarantee might only apply to one
operation of a Web service at a particular end point.

• /wsag:GuaranteeTerm/wsag:ServiceScope/@ServiceName

The name of a service to which the guarantee term refers. A guarantee term service
scope applies to exactly one service.

An example of guarantee term is:
<wsag:GuaranteeTerm Name="GT-ResponseTime">
 <wsag:ServiceScope ServiceName="service-ping"/>
 <wsag:ServiceLevelObjective>

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 85

 <wsag:KPITarget>
 <wsag:KPIName>Uptime</wsag:KPIName>
 <wsag:CustomServiceLevel>
 {"constraint" : "Uptime BETWEEN (90, 100)"}
 </wsag:CustomServiceLevel>
 </wsag:KPITarget>
 </wsag:ServiceLevelObjective>
</wsag:GuaranteeTerm>

6.1.6. Service Level Objective (SLO)

The SLO in an assertion over the service attributes and/or external factors as date,
time.

The definition is:

<wsag:ServiceLevelObjective>
 <wsag:KPITarget>
 <wsag:KPIName>xs:string</wsag:KPIName>
 <wsag:CustomServiceLevel>xs:any</wsag:CustomServiceLevel>
 </wsag:KPITarget>
 |
 <wsag:CustomServiceLevel> xs:anyType </wsag:CustomServiceLevel>
</wsag:ServiceLevelObjective>

KpiName is a name given to the constraint, The sample uses the same name as the
service property used in the constraint. This makes more sense when using thresholds
as service properties. This value is used as the attribute kpiName of any violation of
this GT.

The CustomServiceLevel is not specified by WS-Agreement, and a simple default
implementation is provided. See ConstraintEvaluator section in the developer guide.

Although there are three ways to define an SLO in WS-Agreement, the one supported
in the SLA core is shown in the previous example.

6.1.7. Business Values

Associated with each Service Level Objective is a Business Value List that contains
multiple business values, each expressing a different value aspect of the objective.

The definition is:

<wsag:BusinessValueList>
 <wsag:Importance> xs:integer </wsag:Importance> ?
 <wsag:Penalty>
 <wsag:AssessmentInterval>
 <wsag:TimeInterval>xs:duration</wsag:TimeInterval> |
 <wsag:Count>xs:positiveInteger</wsag:Count>
 </wsag:AssessmentInterval>
 <wsag:ValueUnit>xs:string</wsag:ValueUnit>?
 <wsag:ValueExpression>xs:anyType</wsag:ValueExpr>
 </wsag:Penalty> *
 <wsag:Preference>
 <wsag:ServiceTermReference>xs:string </wsag:ServiceTermReference> *
 <wsag:Utility>xs:float</wsag:Utility> *
 </wsag:Preference> ?

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 86

 <wsag:CustomBusinessValue>xs:anyType</wsag:CustomBusinessValue> *
</wsag:BusinessValueList>

For example:

<wsag:GuaranteeTerm Name="GT-ResponseTime">
 <wsag:ServiceScope ServiceName="service-ping"/>
 <wsag:ServiceLevelObjective>...</wsag:ServiceLevelObjective>
 <wsag:BusinessValueList>
 <wsag:Importante>3</wsag:Importante>
 <wsag:Penalty>
 <wsag:AssessmentInterval>
 <wsag:Count>100</wsag:Count>
 </wsag:AssessmentInterval>
 <wsag:ValueUnit>EUR</wsag:ValueUnit>
 <wsag:ValueExpression>10</wsag:ValueExpression>
 </wsag:Penalty>
 </wsag:BusinessValueList>
</wsag:GuaranteeTerm>

The concept behind this is that a violation of a GT can involve a business penalty. On
the other hand, a fulfilled GT can involve a business reward.

6.2. T-NOVA SLA template example (JSON)

The following template represents the SLA definition of and VNF flavour in T-NOVA:

{
 "context": {
 "agreementInitiator": null,
 "agreementResponder": "f5",
 "service": "TC / should an ontology be defined or this is free text
input?",
 "serviceProvider": "AgreementResponder",
 "templateId": "vnfvnf5gold"
 },
 "name": "vnf5gold",
 "templateId": "vnfvnf5gold",
 "terms": {
 "allTerms": {
 "guaranteeTerms": [
 {
 "businessValueList": {
 "customBusinessValue": [
 {
 "count": 1,
 "penalties": [
 {
 "expression": 5,
 "type": "discount",
 "unit": "%",
 "validity": "P1D"
 }
]
 }

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 87

]
 },
 "name": "pepitovnf5",
 "qualifyingCondition": null,
 "serviceLevelObjetive": {
 "kpitarget": {
 "customServiceLevel": " { \"policies\": [{
\"count\" : 2, \"interval\": 30 }], \"constraint\" : \"pepitovnf5 GT 0.5\"
}",
 "kpiName": "pepitovnf5"
 }
 },
 "serviceScope": null
 },
 {
 "businessValueList": {
 "customBusinessValue": [
 {
 "count": 1,
 "penalties": [
 {
 "expression": 5,
 "type": "discount",
 "unit": "%",
 "validity": "P1D"
 }
]
 }
]
 },
 "name": "juanitovnf5",
 "qualifyingCondition": null,
 "serviceLevelObjetive": {
 "kpitarget": {
 "customServiceLevel": " { \"policies\": [{
\"count\" : 2, \"interval\": 30 }], \"constraint\" : \"juanitovnf5 GT
0.7\" }",
 "kpiName": "juanitovnf5"
 }
 },
 "serviceScope": null
 }
],
 "serviceDescriptionTerm": {
 "name": "requirements",
 "requirements": [
 {
 "name": "virt_mem_res_element",
 "value": 6,
 "unit": "GB"
 },
 {
 "name": "CPU",
 "value": 6,
 "unit": "cores"
 },
 {
 "name": "TLB size",
 "value": 1024,

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 88

 "unit": ""
 },
 {
 "name": "storage",
 "value": 20,
 "unit": "GB"
 }
],
 "serviceName": "calls5k"
 },
 "serviceProperties": [
 {
 "name": "MonitoredMetrics",
 "serviceName": "default",
 "variableSet": {
 "variables": [
 {
 "location": "/monitor/pepitovnf5",
 "metric": "xs:double",
 "name": "pepitovnf5"
 },
 {
 "location": "/monitor/juanitovnf5",
 "metric": "xs:double",
 "name": "juanitovnf5"
 }
]
 }
 }
]
 }
 }
}

6.3. T-NOVA SLA agreement example (JSON)

The following agreement represents the SLA between a function provider (f5) and a
service provider (p6) using the previous template as a base:

{
 "context": {
 "agreementInitiator": "p6",
 "agreementResponder": "f5",
 "service": "TC / should an ontology be defined or this is free text
input?",
 "serviceProvider": "AgreementResponder",
 "templateId": "vnfvnf5gold"
 },
 "name": "vnf5gold",
 "agreementId": "vnfidf51",
 "terms": {
 "allTerms": {
 "guaranteeTerms": [
 {
 "businessValueList": {
 "customBusinessValue": [
 {

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 89

 "count": 1,
 "penalties": [
 {
 "expression": 5,
 "type": "discount",
 "unit": "%",
 "validity": "P1D"
 }
]
 }
]
 },
 "name": "pepitovnf5",
 "qualifyingCondition": null,
 "serviceLevelObjetive": {
 "kpitarget": {
 "customServiceLevel": " { \"policies\": [{
\"count\" : 2, \"interval\": 30 }], \"constraint\" : \"pepitovnf5 GT 0.5\"
}",
 "kpiName": "pepitovnf5"
 }
 },
 "serviceScope": null
 },
 {
 "businessValueList": {
 "customBusinessValue": [
 {
 "count": 1,
 "penalties": [
 {
 "expression": 5,
 "type": "discount",
 "unit": "%",
 "validity": "P1D"
 }
]
 }
]
 },
 "name": "juanitovnf5",
 "qualifyingCondition": null,
 "serviceLevelObjetive": {
 "kpitarget": {
 "customServiceLevel": " { \"policies\": [{
\"count\" : 2, \"interval\": 30 }], \"constraint\" : \"juanitovnf5 GT
0.7\" }",
 "kpiName": "juanitovnf5"
 }
 },
 "serviceScope": null
 }
],
 "serviceDescriptionTerm": {
 "name": "requirements",
 "requirements": [
 {
 "name": "virt_mem_res_element",
 "value": 6,

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 90

 "unit": "GB"
 },
 {
 "name": "CPU",
 "value": 6,
 "unit": "cores"
 },
 {
 "name": "TLB size",
 "value": 1024,
 "unit": ""
 },
 {
 "name": "storage",
 "value": 20,
 "unit": "GB"
 }
],
 "serviceName": "calls5k"
 },
 "serviceProperties": [
 {
 "name": "MonitoredMetrics",
 "serviceName": "default",
 "variableSet": {
 "variables": [
 {
 "location": "/monitor/pepitovnf5",
 "metric": "xs:double",
 "name": "pepitovnf5"
 },
 {
 "location": "/monitor/juanitovnf5",
 "metric": "xs:double",
 "name": "juanitovnf5"
 }
]
 }
 }
]
 }
 }
}

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 91

7. REFERENCES

	

[1] D2.42 - Specification of Network Function Framework and T-NOVA Marketplace.
T-NOVA project.

[2] D6.01 - Interim report on T-NOVA Marketplace implementation. T-NOVA project.

[3] Deliverable D2.1 – System Use Cases and Requirements. T- NOVA project.

[4] RESTFul APIs: http://www.django-rest-framework.org/.

[5] CLOUD4SOA project: http://cordis.europa.eu/fp7/ict/ssai/docs/call5-
cloud4soa.pdf.

[6] FED4FIRE project: http://www.fed4fire.eu/.

[7] XIFI project: https://www.fi-xifi.eu/home.html.

[8] Vodafone: http://www.vodafone.co.uk/about-this-site/terms-and-
conditions/mobile-broadband-via-the-phone/index.htm.

[9] Orange: http://clientes.orange.es/soporte_y_ayuda/pdf/1051479_CCGG_PD.pdf.

[10] ETSI GS NFV 004 Network Function Virtualization. Requirements.

[11] ETSI GS INF 010Network Function Virtualization. Service Quality Metrics.

[12] ETSI GS NFV REL005 V<0.1.4> Network Functions Virtualisation (NFV); Assurance;
Report on Quality Accountability Framework. October 2015.

[13] TMFORUM Enabling End-to-End Cloud SLA Management. October 2014.

[14] QuestForum, “TL 9000 Measurements Handbook”, release 5.0, July 2012.

[15] TM Forum, “TM Forum WebSite,” http://www.tmforum.org.

[16] TMFORUM SLA Management Handbook.

[17] TMForum Information Framework.
http://www.tmforum.org/InformationFramework/1684/Home.html.

[18] TMForum IG1120 Virtualization Impact on SLA Management - April 2015.

[19] TMForum IG1127 End-to-end Virtualization Management: Impact on E2E Service
Assurance and SLA Management for Hybrid Networks R15.0.0 - May 2015.

[20] D5.01 - Interim Report on Network Functions and associated framework. T-
NOVA project.

[21] D6.2 - Brokerage module. T-NOVA project.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 92

[22] D3.01 - Interim Report on Orchestration Platform Implemenation. T-NOVA
project.

[23] CISQ. Consortium for IT Software Quality. http://www.it-cisq.org.

[24] ETSI NFV ISG, “NFV-MAN 001 NFV Management and Orchestration,” July 2014.
[Online]. Available: http://docbox.etsi.org/ISG/NFV/Open/Latest_Drafts/NFV-
MAN001v061 %20management%20and%20orchestration.pdf.

[25] D4.41 - Monitoring and Maintenance – Interim. T-NOVA project.

[26] D4.01 - Interim Report on Infrastructure Virtualisation and Management. T-NOVA
project.

[27] WebService-Agreement specification.
http://wsag4j.sourceforge.net/site/wsag/overview.html.

[28] Apache license, http://www.apache.org/licenses/LICENSE-2.0.

[29] Docker, https://www.docker.com.

[30] Amazon DevPay: http://aws.amazon.com/devpay/.

[31] Google Play. https://play.google.com/store.

[32] Apple App Store (requires iTunes): http://www.itunes.com/appstore/.

[33] BlueVia website: http://www.bluevia.com/.

[34] Orange Partner website: http://www.orangepartner.com.

[35] OPTIMIS Project http://cordis.europa.eu/fp7/ict/ssai/docs/call5-optimis.pdf.

[36] Cyclops, http://icclab.github.io/Cyclops/.

[37] MCN project Mobile Cloud Networking - http://www.mobile-cloud-
networking.eu/site/.

[38] 5GEx project - 5G Exchange - https://5g-ppp.eu/5gex/.

[39] WSAG Guarantee Evaluation Example, https://packcs-
e0.scai.fraunhofer.de/wsag4j/server/guarantee_evaluation_example.html.

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 93

8. GLOSSARY

Name Description

Access Control
Module

Component in the marketplace that administers security
managing and enabling access authorization/control for the
different T-NOVA stakeholders considering their roles and
permissions.

Accounting Module Component in the marketplace that stores all the
information needed for later billing for each user: usage
resources for the different services, SLAs evaluations, etc.

Billing Module Component in the marketplace that produces the bills based
on the information stored in the accounting module

Business Service
Catalog

Catalog in the marketplace that stores all the available
offerings.

Brokerage Module Component in the marketplace that enables trading of VNFs,
facilitating the auctioning between Function Providers.

T-NOVA Customer
(customer)

Stakeholder that aims to acquire T-NOVA Network Services.

Dashboard Graphical User Interface (GUI) for the stakeholders to
interact with the system. In T-NOVA it has 3 different views:
SP dashboard, FP dashboard and customer dashboard.

Function provider Software developer that offer VNFs in the marketplace to be
sold.

Function store (NF
Store)

The T-NOVA repository holding the images and the
metadata of all available VNFs/VNFCs

NFV Infrastructure The totality of all hardware and software components which
build up the environment in which VNFs are deployed

Marketplace The set of all tools and modules which facilitate the
interactions among the T-NOVA actors, including service
request, offering and provision, trading, service status
presentation and configuration, SLA management and billing

NS Catalogue The Orchestrator entity which provides a repository of all the
descriptors related to available T-NOVA services

Offering Each Network Service available in the marketplace together
with a SLA level and price. It is created by the Service
Provider and store in the Business Service Catalogue to
advertise the services to the customer.

Orchestrator The highest-level infrastructure management entity which
orchestrates network and IT management entities in order to

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 94

compose and provision an end-to-end T-NOVA service.

Service Provider Stakeholder that offer Network Services through the
marketplace creating offerings in the business service
catalogue. To create the network services the SP acquires
VNFs from the Function Providers. The VNF are deployed
over the T-NOVA infrastructure.

SLA Management
Module

Component in the marketplace that establishes and stores
the SLAs among all the involved parties and checking if the
SLAs have been fulfilled or not will inform the accounting
system for the pertinent billable items.

SLA template The SLA template is a form has the same structure as the
SLA Agreement but some fields are not filled yet or might
change, like the providers or the final price.

Stakeholder Each of the kind of actors that can use T-NOVA system: SP,
FPs, customers.

T-NOVA Network
Service
(“service”)

A network connectivity service enriched with in-network
VNFs, as provided by the T-NOVA architecture.

T-NOVA Operator The T-NOVA system administrator that owing the T-NOVA
infrastructure controls the activity of all the T-NOVA users.

VNF catalogue The Orchestrator entity which provides a repository with the
descriptors of all available VNF Packages.

VNF A virtualised (pure software-based) version of a network
function

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 95

9. LIST OF ACRONYMS

Acronym Explanation

API Application Programming Interface

BSS Business Support System

CPU Central Processing Unit

DoW Description of Work

GUI Graphical User Interface

ETSI European Telecommunication Standard Institute

EU End User

FP Function Provider

ISG Industry Specification Group

ISP Internet Service Provider

IT Information Technology

KPI Key Performance Indicator

MANO Management and Orchestration

NFaaS Network Functions-as-a-Service

NF Network Function

NFC Network Function Component

NFV Network Functions Virtualisation

NFVI Network Function Virtualization Infrastructure

NFVO Network Function Virtualization Orchestrator

NS Network Service

OSS Operational Support System

QoS Quality of Service

RTT Round trip time

SaaS Software-as-a-Service

SDN Software-Defined Networking

SDO Standards Development Organisation

SID Shared Information/Data model

SLA Service Level Agreement

SP Service Provider

T-NOVA | Deliverable D6.4 SLAs and billing

© T-NOVA Consortium 96

UC Use Case

VM Virtual Machine

VNF Virtual Network Function

VNFaaS Virtual Network Function as a Service

VNFD Virtual Network Function Descriptor

WP Work Package

