

Deliverable D7.1

Early Pilot Site Deployment

Editor G. Xilouris (NCSRD)

Contributors C. Xilouris, S. Kolometsos, E. Trouva, C. Sakkas (NCSRD), J.
Carapinha, J. Bonnet, M. Dias, J. Silva (PTIN), I. Trajkovska, D.
Baudinot, P. Harsh (ZHAW), A. Ramos, J Melian (ATOS), G.
Alexiou, E. Markakis (TEIC), P. Comi, Engo Figini (ITALTEL), L.
Zuccarro (CRAT), A. Petrini (UNIMI), M. McGrath (INTEL), G.
Gardikis (SPH).

Version 1.0

Date December 31st, 2015

Distribution PUBLIC (PU)

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
2

Executive Summary

This Deliverable presents in details the first phase of the activities associated with the
deployment of the pilot sites. During this first phase, the focus has been on the
primary pilot site, hosted in Athens in NCSRD premises. An early view on the
deployed infrastructure is provided. Particularly, the physical topology of the
deployed NFVIs is given as well as the specification of the software and hardware
components used.

The aim of this deliverable is not only to present the technical progress of the project
in the field, but also to constitutes a rough technical guide for the installation and
integration of T-NOVA components. Therefore, it is addressed to any members of the
wider research/industrial community who wish to replicate (all or part of) the T-NOVA
architecture in their own lab infrastructure.

In specific, the deliverable presents the installation and configuration of:

• The Networking infrastructure, comprising of physical and virtual switches and
routers as well as a VPN concentrator allowing remote access

• The IT cloud infrastructure, organised in two Openstack clusters

• The Virtualisation Infrastructure Management components. These include the
Cloud and Network controllers (Openstack and OpenDaylight), the SFC
(Service Function Chaining) framework and the Monitoring framework, as well
as the WICM

• The Orchestrator components, including the TeNOR core services, the
Infrastructure Repository, the Service Mapping as well as the Gatekeeper.

• The Marketplace components along with the NF Store.

For each of the above mentioned subsystems, the installation procedure is detailed
along with any hardware and software dependencies, as well as testing/validation
procedures.

Currently, all partners are engaged in an iterative continuous integration procedure,
in which updated versions of the modules are integrated into the testbed and
validated.

As soon as the pilot reaches an acceptable maturity level, most of the components
will also be deployed to the rest pilots and inter-pilot scenarios will be experimented
upon. These advances will be included in the second edition of this deliverable (D7.2).

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
3

Table of Contents

1. INTRODUCTION .. 8	

1.1. T-NOVA PILOTS AND INTEGRATION STRATEGY ... 8	
1.2. DELIVERABLE INTERDEPENDENCIES ... 10	

2. CONFIGURATION AND DEPLOYMENT OF BASIC NETWORK INFRASTRUCTURE
.. 11	

2.1. PHYSICAL NETWORK PROVISIONING .. 11	

3. INFRASTRUCTURE VIRTUALISATION AND MANAGEMENT DEPLOYMENT 14	

3.1. NFVI TOPOLOGY OVERVIEW ... 14	
3.1.1. NFVI Logical View ... 14	
3.1.2. NFVI Physical View ... 15	
3.1.3. Validation of connectivity among NFVI components ... 19	

3.2. VIRTUALIZED INFRASTRUCTURE MANAGEMENT (VIM) COMPONENTS DEPLOYMENT 21	
3.2.1. Openstack Controller – HEAT Service .. 21	
3.2.2. SDN Controller ... 23	
3.2.3. SFC Framework .. 25	
3.2.4. Monitoring Framework ... 30	

3.3. WAN INFRASTRUCTURE CONNECTIVITY MANAGER (WICM) .. 33	
3.3.1. WICM Installation ... 33	
3.3.2. WICM demonstration .. 34	

4. ORCHESTRATION LAYER DEPLOYMENT ... 38	

4.1. TENOR ... 38	
4.1.1. Main Installation file .. 38	
4.1.2. Cassandra Installation .. 39	
4.1.3. LogStash Installation.. 39	
4.1.4. MongoDB Installation .. 40	
4.1.5. Micro-services registration ... 42	
4.1.6. Byobu Installation ... 42	

4.2. INFRASTRUCTURE REPOSITORY .. 43	
4.2.1. Prerequisites ... 45	
4.2.2. EPA Controller .. 45	
4.2.3. EPA Agent .. 46	
4.2.4. API Middleware .. 46	
4.2.5. Resolved Issues ... 47	

4.3. SERVICE MAPPING .. 47	
4.3.1. Manual Installation .. 48	
4.3.2. Automatic Installation ... 51	
4.3.3. Service Mapper module configuration ... 51	
4.3.4. Starting and stopping the Service Mapper module ... 52	

4.4. GATEKEEPER ... 52	

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
4

4.4.1. Expression Solver (assurance formula evaluator) .. 53	

5. MARKETPLACE AND NF STORE DEPLOYMENT .. 56	

5.1. NF STORE ... 56	
5.1.1. Build NF Store .. 56	
5.1.2. Deploy NF Store .. 57	
5.1.3. Start NF Store ... 58	

5.2. MARKETPLACE ... 59	
5.2.1. Prerequisites ... 59	
5.2.2. Marketplace Deployment ... 61	

6. OVERVIEW OF T-NOVA DEPLOYMENT .. 63	

7. CONCLUSIONS ... 65	

8. REFERENCES ... 66	

9. LIST OF ACRONYMS .. 68	

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
5

Index of Figures

Figure 1 Overall view of the T-NOVA Pilots .. 9	

Figure 2 Physical Network Topology .. 11	

Figure 3 Cisco ASA VPN Tunnel Statistics ... 13	

Figure 4 Cacti Infrastructure monitoring ... 13	

Figure 5 Overall view of Athens Pilot .. 14	

Figure 6 Logical view of NFVI-PoP ... 15	

Figure 7 NFVI-PoP1 physical view .. 16	

Figure 8 Example Component Deployment View .. 17	

Figure 9 NFVI-PoP2 physical view .. 18	

Figure 10 Internet access test .. 19	

Figure 11 Intra-PoP connectivity test .. 20	

Figure 12 Inter-PoP connectivity test .. 20	

Figure 13 Inter-VM testing for the same tenant ... 20	

Figure 14 Inter-VM testing for different tenants .. 21	

Figure 15 Orchestration (HEAT) view in Openstack Dashboard ... 23	

Figure 16 NFVI-PoP 1 Discovered topology ... 24	

Figure 17 NFVI-PoP 2 Discovered topology ... 25	

Figure 18 OpenStack and OpenDaylight nodes in Athens testbed 26	

Figure 19 OVS configuration on SDN switch ... 27	

Figure 20 API POST call for service chain creation .. 29	

Figure 21 Sender VM console as pinging to receiver resumes after the flow has been
installed ... 29	

Figure 22 ICMP messages in the dummy VNF (left) and SFC flows on the switch (right)
 .. 30	

Figure 23 - WICM demo setup .. 35	

Figure 24 Infrastructure Repository on ILE’s Github .. 44	

Figure 25 Go runtime, environment and dependencies deployment 52	

Figure 26 Gatekeeper started and listening for requests .. 53	

Figure 27 Excerpt from Expression Solver log ... 54	

Figure 28 Validation of the service deployment ... 54	

Figure 29 Component network topology .. 63	

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
6

Index of Listings

Listing 1: Configuration of InfluxDB docker container ... 31	

Listing 2: Back-end deployment .. 31	

Listing 3: Grafana Deployment .. 32	

Listing 4: Configuration of collectd network plugin .. 32	

Listing 5: TeNOR’s main modules installation (file install.sh). ... 39	

Listing 6: Installing Cassandra (installation_cassandra.sh). ... 39	

Listing 7: Installing LogStash (file installation_logstash.sh). ... 39	

Listing 8: Installing MongoDB (file installation_mongodb.sh). .. 41	

Listing 9: Loading micro-services (file loadModules.sh). ... 42	

Listing 10: Setting up all sessions using Byobu. .. 43	

Listing 11 Infrastructure Repository deployment ... 44	

Listing 12: Extract of the EPA Configuration File .. 46	

Listing 13: Ruby gems required for the Service Mapper module installation 49	

Listing 14: Compiling the jsonConverter and solver applications 50	

Listing 15. Message on successful automated installation of the Service Mapper
module ... 51	

Listing 16 Gatekeeper Configuration .. 53	

Listing 17 Expression Solver configuration file .. 54	

Listing 18 NF Store build command output ... 57	

Listing 19 NF Store Configuration File .. 58	

Listing 20 Apt repository GPG key installation .. 59	

Listing 21 Docker composition configuration file .. 61	

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
7

Index of Tables

Table 1 Deliverable interdependencies .. 10	

Table 2 Physical Network Nodes .. 12	

Table 3 NFVI-PoP1 nodes' specifications .. 17	

Table 4 Specification of NFVI-PoP2 Nodes .. 18	

Table 5 Environment variables for the communication with Openstack 32	

Table 6 Gatekeeper Components ... 54	

Table 7 NF Store Configuration ... 58	

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
8

1. INTRODUCTION

This deliverable serves both as a technical progress report but also as an early
handbook for the installation and deployment of the T-NOVA components. The
approach followed in this document is to reference details of components that have
been implemented and tested in other technical WPs (i.e. WP3, WP4 and WP5) and
provide the technical deployment and integration details.

The document is structured as follows:

Chapter 1 is the introduction of the deliverable discussing (briefly) the integration
strategy and the T-NOVA Pilots. It also provides the interlinked documents that are
released by the project and provide details on various aspects of the integration.

Chapter 2 specifies the architecture of the testbed physical infrastructure, focusing on
the networking part.

Chapter 3 discusses the deployment and integration of the components of the NFVI
and Virtualised Infrastructure Management (VIM) layer, including the OpenStack and
OpenDaylight controllers, the SFC framework, the monitoring system and the WICM.

Chapter 4 presents the deployment of the Orchestration layer components. Detailed
instructions for the deployment of the TeNOR micro-services are provided
(Cassandra, LogStash, MongoDB and Byoubu). Separate sub-sections describe the
deployment of the Infrastructure Repository, the Service Mapping and the
Gatekeeper modules.

In Chapter 5 guidelines for the NFStore and MarketPlace components installation are
described.

Chapter 6 presents an overall view of the deployed pilot and, finally, Chapter 7
concludes the document.

1.1. T-NOVA Pilots and Integration Strategy

As it is specified and planned in the T-NOVA Description of Work, three pilots are
anticipated. These Pilots have been presented in the Deliverable [2.51] and [2.52]. A
brief overview of the Pilots is given in Figure 1.

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
9

Figure 1 Overall view of the T-NOVA Pilots

The T-NOVA consortium initially has focused in integration efforts in the primary Pilot
i.e the Athens Pilot (Figure 1a). The integration of developed components in the pilot
started already during the early implementation efforts and the Pilot infrastructure
has been continuously evolved over the second year of the project. The efforts in
WP4 (i.e Deliverable [D4.51]) founded a usable NFV infrastructure on which the rest
components were gradually installed.

Initially, the WP5 developments where deployed and validated. The focal points of
these efforts was the automatic deployment it the NFVI using HEAT templates and
the stand-alone operation of each VNF. The next step was the integration of WP3
components, namely the Orchestrator, Infrastructure Repository and the Monitoring
framework. Finally, the last part was devoted to the deployment and integration of
the Marketplace with the Orchestration modules. The Marketplace components were
made available as deployable Docker [docker] containers which proved to be a very
convenient way for Marketplace deployment.

The following steps in the integration, is to transfer the components and the
accumulated know-how in order to effectively deploy all the required - for the
planned experimentation – components to the rest Pilots. The actual deployment in
all the Pilots and the validation of the end-to-end chain is subject of the Deliverable
7.2 to be delivered at the end of the 3rd year of the project.

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
10

1.2. Deliverable interdependencies

The present deliverable integrates the work carried out so far within the rest technical
WPs, and, as such, contains either implicit or explicit references to the deliverables
summarized in the following table.

Table 1 Deliverable interdependencies

Deliverable Name Description Reference

D2.51/D2.52 - Planning of trials
and evaluation

D2.51/2.52 present a birds-eye view of the
T-NOVA Pilots and testbeds as well as the
purpose and scope of each one.

[D2.51],
[D2.52]

D3.1 - Orchestrator Interfaces

D3.2 - Infrastructure Resource
Repository

D3.3 - Service Mapping

D3.41 - Service Provisioning,
Management and Monitoring -
Interim

WP3 deliverables discuss the
implementation of various Orchestration
components. They also provide
information on the appropriate interfaces
used for the intra and inter-component
communications. Information on the
deployement of each component in the
NFV infrastructure is extracted.

[D3.1],
[D3.2],
[D3.3],
[D3.41]

D4.51 - Infrastructure Integration
and Deployment

D4.51 focuses in the implementation of a
testbed comprised the implementations of
the functional entities of the T-NOVA IVM
layer namely the NFVI, and VIM. The task
will integrate the network and cloud assets
into a composite network infrastructure.
The aim is not only to present technical
advances in individual components, but to
demonstrate the added value of the
integrated IVM architecture as a whole.

[D4.51]

D5.1 - Function Store

D5.1 focuses in the implementation of the
Network Function Store and VNF
packetisation. System specifications are
used in order to provide the necessary
resources.

[D5.1]

D5.31 - Network Functions
Implementation and Testing -
Interim

This presents a description of the Virtual
Network Functions (VNFs) developed in
the T-Nova project. Those VNFs have been
developed in order to demonstrate, with
real-life applications, the capabilities
offered by the overall T-Nova framework.

[D5.31]

WP6 Deliverables
WP6 deliverables describe the interfaces
with the Orchestration layer and with the
NF Store.

[D6.1],
[D6.2],
[D6.3],
[D6.4]

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
11

2. CONFIGURATION AND DEPLOYMENT OF BASIC

NETWORK INFRASTRUCTURE

This section summarises the configuration and deployment of the required physical
network elements and their interconnection so as to form the core backbone for the
testbed.

2.1. Physical Network provisioning

In order to initiate the deployment of the NFVI PoPs in Athens Pilot, a series of
configurations need to take place to put in place the physical network that will allow
the proper connectivity of the PoPs with the Internet as well as ensure the
connectivity between them. The Figure 2 depicts the topology of the physical
network components in the Pilot.

The network is divided in three main network segments/branches; two for the two
PoPs and one for the higher-layer T-NOVA services (Orchestrator, Marketplace etc.)

Figure 2 Physical Network Topology

The network is configured flat at the PoP-2 segment while it is configured with VLANs
for the PoP-1. VLAN tag 801 is used for the data network (connectivity for Compute
Nodes) and VLAN tag 802 for the storage network for access to the NAS storage.

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
12

Table 2 below enumerates the network nodes used for the realization of the
aforementioned topology.

Table 2 Physical Network Nodes

Id Vendor Model Capabilities

1 Cisco ASA 5510 Firewall, IDS, IPS and VPN concentrator. 4x10/100Mbps
interfaces, 1GB RAM

2 Cisco ISR 2910 Integrated Services Router, nBAR, 4x 10/100/1000Mbps
interfaces

3 Pica8 P3297 48 x 10/100/1000BASE-T RJ45 port base unit, with four 10
GbE SFP+ uplinks, Layer 2 / Layer 3 protocols with
industry-leading OpenFlow 1.4 / Open-vSwitch (OVS) 2.0
integration, switching fabric capacity of 176 Gbps

4 OVS SDN OVS 2.0 Custom made 5x 10/100 BASE-T Interfaces supporting
OpenFlow 1.4

5 Dell PowerConnect

5524

2x24px10/100/1000BASE-T RJ45. Not Openflow
compatible. Supporting Jumbo frames and iSCSI
optimization.

6 Cisco-
Linksys

SPS2024 24-port 10/100/1000 Ethernet Switch. Not OpenFlow
compatible.

In order to allow connectivity with the Internet, NAT services are offered by the
CISCO ASA network element. The NAT is configured either to be dynamic in order to
allow all the hosts to reach internet or public addresses, or static NAT to allow also
access to specific services from the inside networks to be reachable outside the
firewall.

Additionally, all the partners are able to remotely connect to the infrastructure either
via software SSL clients (Cisco AnyConnect) or over Site-to-Site IPSEC VPN
connections (see Figure). This allows instant reachability for all the development
teams or experimenters currently working in T-NOVA as well as seamless expansion
of the Pilot infrastructure with other Pilots or infrastructure located in other
geographical locations (e.g. expansion of the Athens Pilot to TEIC test-bed). In order
to increase security and also manage connectivity problems each partner is provided
with separate credentials and connection profile.

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
13

Figure 3 Cisco ASA VPN Tunnel Statistics

An overall network monitoring solution is also provided, as an additional measure for
ensuring network performance and problem solving during operation on the
infrastructure. Figure 4 presents statistics gathered for the Firewall and Gateway
services using the network and service monitoring platform [Cacti].

Figure 4 Cacti Infrastructure monitoring

Having configured the basic networking infrastructure, the integration phase
proceeds with the deployment and configuration of the NFV infrastructure and all the
related components.

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
14

3. INFRASTRUCTURE VIRTUALISATION AND

MANAGEMENT DEPLOYMENT

This chapter presents details on the deployment of the NFVI and VIM (IVM) layers. In
contrast to the deliverables which refer to WP4 integration (D4.51/D4.52) and which
contain overall description of the IVM layer deployment, this chapter presents the
actual sequence of steps taken to deploy the IVM components in the Athens pilot.

3.1. NFVI Topology Overview

This section presents the topology of the Athens Pilot as deployed currently in
NCSRD premises. Various views of the NFVI infrastructure are presented along with
the deployment of other components integrated to it. It was selected that one PoP
which would essentially be the more powerful one in terms of IT resources would also
be used to deploy the T-NOVA components. As presented previously in D2.52, the
Athens Pilot is comprised of at least two NFVI PoPs. In later stages the PoPs will be
interconnected by an emulated WAN in order to test the full end-to-end chain as it is
envisaged by T-NOVA project. The overall view is illustrated in Figure 5.

Figure 5 Overall view of Athens Pilot

In order to provide insights in the topology and deployment of components, more
views of the Pilot will be presented later in this document.

3.1.1. NFVI Logical View

The logical view of the reference T-NOVA NFVI – PoP is illustrated in Figure 6. It can
be noticed that all the main components are depicted. Detailed description of this
figure is provided in [D2.52]. For simplicity it was selected that i) the TeNOR, ii) the
Marketplace, iii) the NFStore and iv) the WICM will be deployed in one of the NFVI-
PoPs implemented for the pilot.

NFVI	PoP 3

NFVI	PoP 2

IP/MPLS	WAN

WICM

TeNOR MrkPlace

VIM

NFStore

NFVI-PoP 1datacenter

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
15

Figure 6 Logical view of NFVI-PoP

3.1.2. NFVI Physical View

The Pilot is comprised of two separate NFV infrastructures (NFVIs) interconnected at
the moment via a L3 network. Each NFVI is considered as a unique NFVI-PoP with it
own management entities i.e the VIM. Currently different versions of the same
components (compute nodes, network node, SDN controller, storage nodes, etc.)
constitute each NFVI-PoP. Moreover, each PoP has a different number of compute
nodes, resulting in different amounts of IT resources for VNF provisioning. The
network interconnecting the two PoPs will be replaced by a dedicated subsystem
emulating a wide-area MPLS network.

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
16

3.1.2.1. NFVI – PoP1

Figure 7 NFVI-PoP1 physical view

Figure 7 illustrates the physical topology of the network nodes, compute nodes and
network links that constitute the NFVI-PoP1. This PoP as explained later in this
document provides networking to the VNFs via the Openstack Neutron service. Thus
all the networking is taken care automatically by Openstack provided that the
physical networks required for the proper operation of Openstack are provided. For
this reason, three network segments are provisioned: i) Public network for assignment
of “public” IPs at the VNFs; ii) Management network used for communication of the
various Openstack distributed services and iii) Storage network used for provisioning
of shared storage between the Compute Nodes via Network File System [NFS]. The
shared storage stores the VNF instances allowing for fast migration and minimizing
the latencies due to network transfers.

In addition to the above, a “Services” network segment was created in order to host
auxiliary and common services for the aforementioned NFVI-PoPs. In this segment
common Domain Name Server (DNS) for all PoPs and ODL instances for each PoP are
hosted.

Due to the resource availability in this PoP it was selected to deploy all the T-NOVA
components in the provided infrastructure. The figure below depicts a snapshot of
this deployment. Blue rectangles represent native Openstack services while the grey
rectangles represent the T-NOVA components.

As shown there are five compute nodes in this deployment. The first three are serving
with the expected OpenStack role of compute node in a common OpenStack
deployment, servers on which the users will create their virtual machines. The other
two compute nodes in the infrastructure provide additional virtualisation capabilities.
Compute Node 4 offers 2x10Gbps NICs that support SR-IOV for enhanced
networking performance and Compute Node 5 offers GPU acceleration via nVidia
graphics card.

10.30.0.11

SER
IV
CES:	

10.30.0.0/24

DNS

ODL	– PoP1

10.30.0.100

PUBLIC:	
10.10.1.0/24

FIREWALL	
VPN

CN	1 CN	2 CN	3 CN	4

MANAGEMENT/DATA:	
10.10.2.0/24

STORAGE:	
10.10.3.0/24

Cloud	Controller
Neutron

10.10.1.2

10.10.2.11

10.10.3.11 10.10.3.12 10.10.3.13 10.10.3.14

CN	5

10.10.2.12 10.10.2.13 10.10.2.14 10.10.2.15

10.10.3.1510.10.3.2

NFS
STORAGE

10.10.3.10

10.30.0.101

vpn.medianetlab.gr

Public	10.10.1.0/24
Mngt 10.10.2.0/24
Storage	10.10.3.0/24
Real	Public143.233.127.0/27

NFVI-PoP 1	

10.30.0.61

ODL	– PoP2

NFVI-PoP 2

Services	10.30.0.0/24

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
17

Figure 8 Example Component Deployment View

The specifications of the nodes that are deployed in this PoP are enumerated at the
table below. Particularly two nodes offer acceleration characteristics to the deployed
VNFs. Compute Node 5 is offering GPU acceleration support for workload configured
to utilise the multiple processing cores available in the GPU, while SR-IOV capable
10Gbps Network cards in compute node 4 allow for direct path access for enhanced
network performance.

Table 3 NFVI-PoP1 nodes' specifications

ID Role Vendor

CPU

RAM Storage
Extra

Features Model CPU
sockets

Cores

1 Cloud Controller
/ Neutron Node

HP Proliant
DL380e
Gen 8

Intel(R) Xeon(R)
CPU E5-2420 0
@ 1.90GHz

1
12 16 1 TB -

2 Compute Node 1
Dell R630

Intel(R) Xeon(R)
CPU E5-2640 v3
@ 2.60GHz

2
16 32 500 GB -

3 Compute Node 2
Dell R630

Intel(R) Xeon(R)
CPU E5-2640 v3
@ 2.60GHz

2
16 32 500 GB -

4 Compute Node 3
Dell R630

Intel(R) Xeon(R)
CPU E5-2640 v3
@ 2.60GHz

2
8 32 500 GB -

5 Compute Node 4
Dell R630

Intel(R) Xeon(R)
CPU E5-2640 v3
@ 2.60GHz

2
16 32 250 GB SR-IOV

6 Compute Node 5

HP Z230

Intel(R)
Core(TM) i7-
4790 CPU @
3.60GHz

1

8 16 500 GB
GPU

Acc.

Neutron

Glance

HEAT

Ceilometer

Nova

Keystone

Cloud	Controller

Neutron	

Ceilometer
Nova

Comp.	Node	1

Infr.	Repos.	1

Monitoring

NFVO

Catalogues

Neutron	

Ceilometer
Nova

Comp.	Node	2

Serv.		Mapping

Infr.	Repos.	2

Infr.	Repos.	3

VNFM-mAPI Cassandra

Gatekeeper Marketplace

Neutron	

Ceilometer
Nova

Comp.	Node	3

WICM

Neutron	

Ceilometer
Nova

Comp.	Node	4

Neutron	

Ceilometer
Nova

Comp.	Node	5

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
18

3.1.2.2. NFVI-PoP2

Figure 9 illustrates the physical topology of the network nodes, compute nodes and
network links that constitute the NFVI-PoP2. This PoP is focused on providing full
SDN integration with the Openstack environment. Due to incompatibilities of the
latest Openstack version, Openstack Liberty, with ODL Helium, a previous version of
Openstack (i.e. Juno) is used. The PoP is comprised of 3 Nodes: i) a Neutron Node
running only the Neutron Service, ii) a Cloud Controller node running the nova
service acting also a compute node – running the nova-compute service and iii) a
compute node running nova-compute service. Networking across the PoP is achieved
with OVS at each node and the Pica8 SDN switch for physical interconnection. As in
the case of PoP1, there is a separate network segment where the ODL node for this
PoP is connected. Particularly this PoP serves the purpose of experimentation for the
SFC and WICM integration. Finally, the PoP is serviced by the same DNS server as the
PoP1.

Figure 9 NFVI-PoP2 physical view

The table below summarised the specifications of the server nodes used for the
realisation of the second PoP (i.e NFVI-PoP 2).

Table 4 Specification of NFVI-PoP2 Nodes

ID Role Vendor

CPU

RAM Storage Extra Model CPU
sockets

Cores

1 Neutron Node
BTO
Workstation

Intel(R)
Pentium(R) 4
CPU 3.00GHz

1 2 4 300 GB -

10.30.0.11

SERIVCES:	
10.30.0.0/24

DNS

PUBLIC:	
10.100.0.0/24

FIREWALL	
VPN

CN	1 CN	2

MANAGEMENT:	
10.10.2.0/24

Neutron	Node

10.100.0.2

10.100.2.2 10.100.2.3

vpn.medianetlab.gr

Public	10.100.0.0/24
Mngt 10.100.2.0/24
Data	10.100.3.0/24
Real	Public143.233.127.0/27

NFVI-PoP 2
SDN	

10.30.0.100

10.30.0.61

NFVI-PoP 1

Data:
10.100.3.0/24

10.100.3.2 10.10.3.3
ODL	– PoP2

ODL	– PoP1
10.100.3.1

10.100.2.1

Services	10.30.0.0/24

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
19

2
Cloud
Controller

Dell R210 II

Intel(R)
Xeon(R) CPU
E3-1240 V2 @
3.40GHz

1 8 16 1 TB -

3
Compute
Node 1

Dell R210 II

Intel(R)
Xeon(R) CPU
E3-1240 V2 @
3.40GHz

8 16 16 1 TB -

3.1.3. Validation of connectivity among NFVI components

Following the deployment of the NFVI, some simple connectivity tests (via ping) are
executed in order to verify the connectivity between the NFVI infrastructure tenants
and the proper operation of the infrastructure.

3.1.3.1. Testing connectivity to the internet

The primary test is to test connectivity from a host within the PoPs to the Internet.

Figure 10 Internet access test

The test is successful with zero packet loss and 60ms RTT.

3.1.3.2. Testing connectivity intra-PoP

This test aims to validate that the two VMs within the PoP are able to communicate.

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
20

Figure 11 Intra-PoP connectivity test

The test is successful with zero packet loss and 0.2ms RTT, using the cloud data
network (10.10.2.0/24).

3.1.3.3. Testing connectivity between PoPs

This test aims to validate that different VMs in different PoPs can communicate.

Figure 12 Inter-PoP connectivity test

The test is successful with zero packet loss and 0.6ms RTT, using the public neutron
node addresses (10.10.1.2 and 10.100.0.3 respectively).

3.1.3.4. Testing inter-vm communication for the same tenant

Figure 13 Inter-VM testing for the same tenant

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
21

The test is successful with zero packet loss and 0.3ms RTT, using the provisioned
virtual network IPs.

3.1.3.5. Testing inter-vm communication for different tenants

Figure 14 Inter-VM testing for different tenants

The test is successful with zero packet loss and 1.4ms RTT, using the floating (public)
IPs assigned to the VMs.

3.2. Virtualized Infrastructure Management (VIM) components
deployment

3.2.1. Openstack Controller – HEAT Service

In order to install the Orchestration Service, also known as Heat, the following steps
have to be completed.

 First, a database must be created and configured:

mysql –u root –p
CREATE DATABASE heat;
GRANT ALL PRIVILEGES ON heat.* TO ‘heat’@’localhost’ IDENTIFIED BY

‘HEAT_DBPASS’;
GRANT ALL PRIVILEGES ON heat.* TO ‘heat’@’%’ IDENTIFIED BY ‘HEAT_DBPASS’;

Then, to create the service credentials:

source admin-openrc.sh
openstack user create –domain default –password-prompt heat
openstack role add –project service –user heat admin
openstack service create –name heat –description “Orchestration”

orchestration
openstack service create –name heat-cfn –description “Orchestration”

orchestration

Afterwards, the Orchestration service API endpoints have to be created:

openstack endpoint create –region RegionOne orchestration public
http://controller:8004/v1/%\(tenant_id\)s

openstack endpoint create –region RegionOne orchestration internal
http://controller:8004/v1/%\(tenant_id\)s

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
22

openstack endpoint create –region RegionOne orchestration admin
http://controller:8004/v1/%\(tenant_id\)s

openstack endpoint create –region RegionOne cloudformation public
http://controller:8004/v1

openstack endpoint create –region RegionOne cloudformation internal
http://controller:8004/v1

openstack endpoint create –region RegionOne cloudformation admin
http://controller:8004/v1

openstack domain create –description “Stack projects and users” heat
openstack user create –domain heat –password-prompt heat_domain_admin
openstack role add –domain heat –user heat_domain_admin admin
openstack role create heat_stack_owner
openstack role add –project demo –user demo heat_stack_owner
openstack role create heat_stack_user

At this point the installation and the configuration of the following components are
required:

apt-get install heat-api heat-api-cfn heat-engine

Wait until the installation is complete. Then edit the /etc/heat/heat.conf and add the
following lines under the following sections of the file.

In the [database]:

connection = mysql+pymysql://heat:HEAT_DBPASS@controller/heat

In the [DEFAULT]:

rpc_backend = rabbit
heat_metadata_server_url = http://controller:8000
heat_waitcondition_server_url = http://controller:8000/v1/waitcondition
stack_domain_admin = heat_domain_admin
stack_domain_password = HEAT_DOMAIN_PASS
stack_user_domain_name = heat
verbose = true

In the [oslo_messaging_rabbit]:

rabbit_host = controller
rabbit_userid = openstack
rabbit_password = RABBIT_PASS

In the [keystone_authoken]:

auth_uri = http://controller:5000
auth_uri = http://controller:35357
auth_plugin = password
project_domain_id = default
user_domain_id = default
project_name = service
username = heat
password = HEAT_PASS

In the [trustee]:

auth_plugin = password
auth_url = http://controller:35357
username = heat
password = HEAT_PASS
user_domain_od = default

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
23

In the [clients_keystone]:

auth_uri = http://controller:5000

In the [ec2authtoken]

auth_uri = http://controller :5000

Finally, to complete the installation, populate the database and restart the services:

su –s /bin/sh –c “heat-manage db_sync” heat
service heat-api heat-api-cfn heat-engine restart

If all done correctly, the Orchestration tab should now have been added to the
OpenStack dashboard as illustrated in Figure 15.

Figure 15 Orchestration (HEAT) view in Openstack Dashboard

Additionally it should also be possible from the command line to access the
Orchestration service and execute commands.

3.2.2. SDN Controller

The SDN Controller (i.e OpenDayLight) can be integrated in the Pilot by two means.
The first one is a light integration in which the controller controlling the HW switched
in the infrastructure but not the OVS instances inside the Compute Nodes. This
method is followed for the NFVI-PoP 1. The second method of integration is the tight
integration where the ODL communicates via the ml2 plugin with Neutron service
(Openstack) and therefore controls also the OVS instances inside the compute nodes.
The latter integration mode is used at the NFVI-PoP2. Both modes support a smooth
operation of the NFVI environment, however the second mode is not currently
compatible with Openstack Liberty release.

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
24

3.2.2.1. Light Integration

As said previously the light integration allows the provision of a L2 physical network
over which the Openstack Neutron service can deploy the GRE based virtual networks
for its tenants. The only interaction of Neutron with ODL is done at the VIM level. It
can also be used in production environment where the Provider Networks networking
model is used for the deployment. In such cases VLANs are used for realisation of the
networking and the virtual networking is provided solely by the Operator NMS. The
discussed deployment for T-NOVA is based on OpenStack Liberty, deployed over
Ubuntu 14.04 (LTS) OS and OpenDayLight Lithium.

The deployed components are:

§ Infrastructure switch: Pica8 (10.30.0.101)
§ Openstack Controller/Neutron: 10.10.1.2/24
§ ODL Controller: 10.30.0.100

The virtual bridge created at the Pica8 OVS instance is configured to connect to the
ODL controller. As soon as the switch establishes connection with the controller, the
topology of the network is discovered. The results of the above process are illustrated
in Figure 16 that shows the OpenDaylight SDN Controller topology view.

Figure 16 NFVI-PoP 1 Discovered topology

3.2.2.2. Full Integration

Full integration is achieved using OpenStack Juno version deployed over Ubuntu
14.04 (LTS) with OpenDaylight Lithium version. This integration resumes all
operations using OF protocol for the control of the OVS instances and used the ml2-
plugin for the ODL – Openstack Neutron communication.

This deployment is used for the NFVI-PoP 2 and uses the following components:

• OpenStack nodes, 10.100.2.0/24

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
25

• Neutron Node, 10.100.2.1/24
• OpenDaylight controller, 10.30.0.61/24

Complete configuration instructions are available on [D4.51], Annex B. Figure 17
depicts the OpenDaylight SDN Controller topology view, in which there are apparent
3 OVSs (one per OpenStack node). GRE tunnels (not visible) are used in order to
realize the virtual networks used by the tenants and their VMs.

Figure 17 NFVI-PoP 2 Discovered topology

3.2.3. SFC Framework

The SDK4SDN has been implemented in Java programming language and it is
currently integrated as a holistic component that includes a Lithium version of the
OpenDaylight controller. It has been to date tested and supported using OpenStack
Kilo (in the ZHAW SDN testbed) and OpenStack Juno (in the Demokritos testbed).

To deploy the SDK in the Athens T-NOVA Pilot, a designated SDN NFVI-PoP was
used, as shown in . The PoP consisted of three OpenStack nodes (Juno), one node
reserved for the SDN controler and one physical switch.

To be able to use SDK4SDN the network needs to be fully SDN enabled through the
OVS switches. The network interfaces of the switch are connected with the interfaces
of the OpenStack and the ODL nodes.

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
26

Figure 18 OpenStack and OpenDaylight nodes in Athens testbed

Firewall Configuration on Neutron Node

The default SFC implementation requires disabling iptables rules that would prevent
non-standard forwarding to OpenStack instances.

This should be edited on the cloud control and compute node in the file
/etc/neutron/plugins/ml2/ml2_conf.ini:

[securitygroup]
enable_security_group = False
firewall_driver = neutron.agent.firewall.NoopFirewallDriver

To stop nova-compute from creating the iptables rules, it was configured to use its
Noop driver in /etc/nova/nova.conf:

[DEFAULT]
security_group_api = nova
firewall_driver = nova.virt.firewall.NoopFirewallDriver]]

Finally, neutron-server, neutron-openvswitch-agent, nova-api and nova-compute
services should be restarted.

Deployment and Installation

The SDK4SDN can only detect OVS topology. A Physical switch which supports OVS is
for example the Pica8 switch in OVS mode. In the current integration, the Pica8 switch
was substituted due to the following two reasons:

• Currently the ODL controller cannot be setup as Manager of the OVS on the
Pica8 switch. It has been reported as current Pica8 issue in the community and
it is under a process of resolution.

• The SDK requires a clear OVS setup and network state as it takes over the
whole networking topology. The Pica8 switch in the PoP 2 had already some
services attached to specific ports that if the SDK was attached, would had to
be deleted.

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
27

The OVS configuration on the compute nodes has to be setup such that the switches
are connected in one layer 2 domain. For each compute node, an OVS port was
configured that bridges a physical interface. Note that if a compute host has a single
physical interface then the IPs on that interface need to be attached to the internal
interface of the OVS bridge. The following image shows the ovs setup of the SDN
switch:

Figure 19 OVS configuration on SDN switch

The OpenDaylight controller needs to be reachable via TCP 6640 and TCP 6633 from
every OVS and reachable via HTTP from the Orchestrator so it can accept the SFC
instructions. After the deployment, the OpenDaylight controller can be started.

The steps in order to setup the environment are the following:

1. Connect to the pilot environment using VPN

2. Login to all OpenStack nodes, the switch and ODL node as root

3. Download the SDK4SDN form the GitHub page (to be added to the TNova code
repositories). Compile the code using: mvn clean install.

4. Configure the OVSs on each of the nodes to connect to the IP of the OpenDaylight
controller as well as set up the ODL as manager on port 6640:

ovs-vsctl set-manager tcp:Controller_IP:6640
ovs-vsctl set-contorller tcp:Controller_IP:6633

With these basic steps the SDK is ready to be started as long as we have the
environment prepared for this. To make sure all the state is clear before running the
SDK, the following steps and checkups are required:

• OVS running in all of the nodes (run ovs-vsctl show to confirm and also check
the configuration of the OVS)

• SDK not running: ./karaf/target/assembly/bin/status
• Cleanup OpenStack environment (faster on dashboard, URL:

10.100.0.3/horizon): delete all VMs, delete router interfaces, delete routers,
and delete all networks.

• Source the admin file: source keystonerc_admin
• Make sure you delete the following directories:

rm -rf karaf/target/assembly/data
rm -rf karaf/target/assembly/journal
rm -rf karaf/target/assembly/snapshots

After the above steps start the SDN controller (the SDK):

 ./karaf/target/assembly/bin/start

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
28

To watch the logs on the SDN node run:
tail -f ./karaf/target/assembly/data/log/karaf.log

You should see that links get discovered, the initialization process etc. The SDK
startup is done when the last log message from ODL displays: GraphListener. Next,
go to the controller and start the OpenStack startup script that installs the basic
networking components: ./quickneutron.sh.

While creating the network elements in OpenStack, the SDK log displays how the
neutron ports get detected and few seconds later, the same for the ovs ports. After
that, the paths get detected and flows are pushed to the br-int of the controller. On
the controller you can check the created ports and the flows: ovs-vsctl show; ovs-ofctl
dump-flows br-int.

Service Function Chaining

From the dashboard, create three VMs: sender and receiver VM with CentOS and tiny
flavor, connecting them to the internal private network; one VM destined for the
dummy VNF (it can be created form snapshot dummy_vnf). After inserting the private
keys, connect the VM to the private network. In the control node, create two neutron
ports vnf_in and vnf_out and attach them to the dummy VNF VM:

neutron port-create vnf_in
neutron port-create vnf_out
nova interface-attach --port-id [PORT_ID_vnf_in] vnf
nova interface-attach --port-id [PORT_ID_vnf_out] vnf

The SDK log displays moreover the added new paths by creating VMs within the new
subnet. Also now the broadcast and path flows get created. To check this, go to the
node where a VM is spawned, and ovs-vsctl show to see the flows installed. Besides
the NORMAL and the LLDP flows, you can see other flows: broadcast flows to the
Router, the DHCP and the other VMs; flows for connections between the VMs.

After the VNF has the two interfaces assigned from the other two private networks,
associate a floating IP and access the VNF. Meanwhile login via the console to the
sender VM and ping the receiver VM to confirm connectivity.

Next step is to call the REST APIs via cURL in the command line of the ODL node in
order to invoke the creation of the chain. For the API call, the neutron port IDs of the
VMs need to be specified in order “sender, vnf_in, vnf_out, receiver” as a string of
comma separated values. To retrieve the Neutron ports of the VMs, run on the
controller: neutron ports-list and match the port-id with the IPs of both, the endpoints
and the VNF. Finally, the POST API call looks as shown below:

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
29

Figure 20 API POST call for service chain creation

After correct chain establishment, there is 200 OK response message form the
controller. The sender and the receiver can no longer detect each other through ping
communication. This shows that there is intermediate node (the dummy_vnf)
blocking the chain. In order to get the traffic through, the VNF includes a flow:

ovs-ofctl add-flow [vnf_br] in_port=1,actions=output:2

Make sure of the correct mapping between the input and output ports and also that
the two ports eth1 and eth2 are properly listed in the:

ovs-ofctl dump-ports-desc [vnf_br]

After this, confirm that the pinging goes through again as shown in Figure 21.

Figure 21 Sender VM console as pinging to receiver resumes after the flow has been
installed

It can be also checked by running: tcpdump –i eth1 /eth2 on the node where the VNF
is running and checking for ICMP messages, as the left terminal on the figure below
shows:

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
30

Figure 22 ICMP messages in the dummy VNF (left) and SFC flows on the switch (right)

This dummy VNF represents a simplistic case of the T-Nova vTC VNF used to steer
traffic from one interface eth1 and send it to the other eth2 interface of the VNF VM.

Run on the switch terminal: ovs-vsctl dump-flows [br_name] to see if the packets_in
counter increases as the pinging proceeds (for the flows with priority=20, i.e. the
chain flows, as the right figure shows). Delete the flow in the VNF in order to see that
the ping stops: ovs-ofctl del-flows vnf.

To DELETE the chain, a POST call is made using the service-chain-id as input
parameter in the JSON string:

The design and the development details of the SDK4SDN can be found in the T-
NOVA Deliverable [D4.31].

3.2.4. Monitoring Framework

With regard to the installation and deployment of the VIM monitoring back-end, for
the convenience of the end-users, an official Docker image is provided. The official
Docker image is based on a minimal Node.js Docker image. It was selected due to its
small size: it does not exceed 40 MB. This image is built on Alpine Linux and contains
additionally just the node as a static binary with no npm.

Thus, in order to deploy the VIM monitoring back-end, it is essential to deploy the
necessary Docker containers and to configure accordingly the monitoring agents.

3.2.4.1. InfluxDB

The monitoring back-end requires an InfluxDB instance to host the monitoring data.
The Docker container by Tutum1 is used in the T-NOVA testing infrastructure and is
highly recommended.

It is run with the following configuration:

docker run --name influxdb -d --restart=always \
 --env 'PRE_CREATE_DB=statsdb' \
 --env 'COLLECTD_DB=statsdb' --env 'COLLECTD_BINDING=:8096' \
 --volume /srv/docker/tnova_vim/tsdb:/data \

1 https://github.com/tutumcloud/influxdb

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
31

 --publish 8083:8083 --publish 8086:8086 --publish 8096:8096/udp \
 tutum/influxdb:0.9

Listing 1: Configuration of InfluxDB docker container

The options to be set are:

 --name influxdb: This is an identifier of the Docker container.

 -d: This is to start the container in detached mode.

 --restart=always: Always restart the container regardless of the exit status. This is
to ensure starting the container during the Docker daemon start, in case the host
restarts.

 --env options: This is to ensure that a database (statsdb in the example) is created
on the first time the container runs, that this database is used for storing collectd
data and that the InfluxDB is listening for collectd connections on the specified port.

 --volume option: The only data volume is used here to persist the database files.

 --publish options: The published port 8083 provides an HTTP user interface, port
8096 an HTTP API and port 8096 the collectd interface.

3.2.4.2. Monitoring Back-end

After setting up InfluxDB, the deployment of the back-end follows. The docker image
is already available in dockerhub2 and its deployment is achieved via:

docker run --name monitoring_backend -d --restart=always \
 --env 'CEILOMETER_HOST=localhost' --env 'CEILOMETER_PORT=8777' \
 --env 'NOVA_HOST=localhost' --env 'NOVA_PORT=8774' \
 --env 'IDENTITY_HOST=localhost' --env 'IDENTITY_PORT=5000' \
 --env 'IDENTITY_TENANT=tenant' \
 --env 'IDENTITY_USERNAME=username'--env'IDENTITY_PASSWORD=pass'\
 --link influxdb:influxdb \
 --publish 8080:3000 \
 spacehellas/tnova-vim-backend:latest

Listing 2: Back-end deployment

The docker run command above had the following options:

 --name monitoring_backend: This is an identifier of the Docker container.

 -d: This is to start the container in detached mode.

 --restart=always: Always restart the container regardless of the exit status. This is
to ensure starting the container during the Docker daemon start, in case the host
restarts.

 --env options: The environment variables are explained in the next section.

 --link influxdb:influxdb: This option links the back-end container with the InfluxDB
one. Docker bridges this way the two containers automatically and the back-end
container can detect which ports InfluxDB listens to.

2 https://hub.docker.com/r/spacehellas/tnova-vim-backend/

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
32

 --publish 8080:3000: The back-end application listens to port 3000 inside the
container.

Table 5 below identifies the environment variables which need to be set for the
proper communication with Openstack.

Table 5 Environment variables for the communication with Openstack

Name Description

CEILOMETER_HOST Defines the host of the OpenStack Ceilometer service

CEILOMETER_PORT Defines the port of the OpenStack Ceilometer service

NOVA_HOST Defines the host of the OpenStack Nova service

NOVA_PORT Defines the port of the OpenStack Nova service

IDENTITY_HOST Defines the host of the OpenStack Identity (Keystone) service

IDENTITY_PORT Defines the port of the OpenStack Identity (Keystone) service

IDENTITY_TENANT Defines the OpenStack tenant's name

IDENTITY_USERNAME Defines the OpenStack username

IDENTITY_PASSWORD Defines the OpenStack password

3.2.4.3. Grafana (optional)

Although not an essential component for the proper operation of the monitoring
framework and the implementation of the use cases, Grafana can be installed as
follows in order to visualize the monitoring data:

docker run --name grafana -d --restart=always \
 --publish 3000:3000 \
 grafana/grafana:latest

Listing 3: Grafana Deployment

3.2.4.4. Monitoring agents configuration

The VIM Monitoring Back-End uses collectd to collect the VNF instance monitoring
data. Most importantly, it requires the collectd network plugin3 to be setup against
the InfluxDB in order to send monitoring data:

<Plugin network>
 Server "<influxdb_host>" "<influxdb_port>"
 ReportStats false
</Plugin>

Listing 4: Configuration of collectd network plugin

influxdb_host and influxdb_port are the hostname and the port that are set previously
for the InfluxDB Docker container.

3 https://collectd.org/wiki/index.php/Plugin:Network

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
33

3.3. WAN Infrastructure Connectivity Manager (WICM)

As the WICM component is not part of the integrated Pilot yet, this subsection
presents a tutorial on the deployment and configuration of the WICM standalone
component. The code for WICM is available as an opensource and available at the
public github repository. 4

The following tutorial is composed by two parts. The first presets the steps required
to install WICM and the second explains how to setup the test environment for
WICM. This tutorial has been tested on an Ubuntu 14.04 Linux machine. However,
WICM may also work in other Linux distributions.

3.3.1. WICM Installation

1) Log in the machine where the WICM is being deployed.
2) Download the WICM code found in the T-NOVA repository an extract the

code

tar -zxf compressed_file.tar.gz

3) Make sure the system is up to date:

apt-get update && apt-get upgrade -y

4) Install the following packages: python-dev, python-mysqldb, python-pip:

apt-get install python-dev -y
apt-get install python-mysqldb -y
apt-get install python-pip -y

5) Install the required python libraries:

pip install flask
pip install Flask-SQLAlchemy
pip install requests
pip install MySQL-python
pip install SQLAlchemy

6) Install mysql database:

apt-get install mysql-server -y

7) Create the WICM’s database:

set the correct credential settings for the database in the file
path/to/wicm/mysql/create_DB.sh

a. DATABASE_NAME - Name of the database to be used by WICM
b. DBUSER - WICM's database user
c. DBUSERPASS - WICM's database password
d. DBPASSWD - mysql root password

8) create the database by running:

./path/to/wicm/mysql/create_DB.sh

4 https://github.com/T-NOVA/WICM

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
34

9) Update the WICM file with the correct credentials
a. port - local port where WICM is listening
b. ip - local ip
c. odl_location - opendaylight’s location
d. odl_auth - opendaylight’s credentials (user, password)
e. mysql_connect - mysql connection string

10) Start WICM:

python ./path/to/wicm/main.py

11) Reset the database:

curl -X DELETE wicm_ip:wicm_port/reset_db

3.3.2. WICM demonstration

The WICM controls an OVS to redirect traffic to an external NFVI-POP and then
receive the processed traffic and forward it to its original destination. This section
shows how to build an environment to showcase the WICM.

The test environment is composed by 3 nodes: the first running an Openstack cluster
(called Biker in this document) is used to simulate the NFVI-POP where the service
chain is to be put in place. Traffic is going to be redirected into this machine in order
to be processed. Next there is the node (called Alex) running OpenDaylight, the
WICM, OVS and the traffic generators. WICM controls the OVS via OpenDaylight. The
traffic generators produce the traffic to be redirected (customer traffic in a real
scenario). Biker and Alex are two physical machines, connected over an Ethernet
connection. Finally, a third machine is used in order to run the test script, which will
act as a client and show WICM’s functionality on a step by step fashion.

Figure 23 illustrates the demo setup. The blue and red dotted lines represent the
traffic flows – while the red traffic flows directly between the aggregator switches br-
ce and br-pe, the blue traffic is redirected to the NFVI-PoP and passes through the
VNF located there before being sent to the intended destination.

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
35

Figure 23 - WICM demo setup

3.3.2.1. Node 1 - Biker

Installation steps for OpenStack are out of the scope of this tutorial. The machine is
expected to have a file called admin-openrc.sh containing OpenStack Keystone
authentication credentials on the home directory.

3.3.2.2. Node 2 - Alex

Start by installing the OpenVirtual Switch. A version equal or better than 2.3.2 is
required:

apt-get install ubuntu-cloud-keyring
echo "deb http://ubuntu-cloud.archive.canonical.com/ubuntu" "trusty-

updates/kilo main" > /etc/apt/sources.list.d/cloudarchive-kilo.list
apt-get update && apt-get install openvswitch-switch –y

Then, download OpenDaylight:

Wget
https://nexus.opendaylight.org/content/repositories/opendaylight.release/o
rg/opendaylight/integration/distribution-karaf/0.3.2-Lithium-
SR2/distribution-karaf-0.3.2-Lithium-SR2.tar.gz

tar -zxf distribution-karaf-0.3.2-Lithium-SR2.tar.gz
rm distribution-karaf-0.3.2-Lithium-SR2.tar.gz

1. Select the required ODL features for WICM by setting featuresBoot variable in
file org.apache.karaf.features.cfg

cd path/to/odl/etc
sed –i \
's/featuresBoot=config,standard,region,package,kar,ssh,management/featuresBo

ot=config,standard,region,package,kar,ssh,management,odl-restconf-all,odl-
dlux-all, odl-mdsal-apidocs, odl-openflowplugin-all/g'
org.apache.karaf.features.cfg

2. ODL requires java7 to run. To install it issue the following commands:

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
36

apt-get update && apt-get upgrade -y
apt-get update && apt-get install openjdk-7-jre -y

3. Start ODL:

./path/to/odl/bin/start clean

4. Check if ODL is running:

./path/to/odl/bin/status

Setup the traffic generators:

1. Install Vagrant:

apt-get install dpkg-dev virtualbox-dkms
wget https://releases.hashicorp.com/vagrant/1.8.0/vagrant_1.8.0_x86_64.deb
dpkg -i vagrant_1.8.0_x86_64.deb

2. Prepare the network:

./path/to/wicm/test_env/init_network.sh

3. Start the vagrant machines

cd ./path/to/wicm/test_env
vagrant up

Finally, deploy the WICM, if not already deployed on node Alex.

3.3.2.3. Node 3 - Tester

1) Log in the machine
2) Extract the code

tar -zxf compressed_file.tar.gz

3) Make sure the system is up to date:

apt-get update && apt-get upgrade -y

4) Install the following packages: python-dev, python-pip

apt-get install python-dev -y
apt-get install python-pip -y

5) Install the required python libraries:

pip install prettytable
pip install pycrypto
pip install ecdsa
pip install fabric

6) Add the host names of the two other nodes (change the ips to fit your
system):

echo “192.168.92.184 biker” >> /etc/hosts
echo “192.168.92.206 alex” >> /etc/hosts

7) Run the test script:

cd ./path/to/wicm/test_env/
python main_test.py

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
37

An extended description of the WICM component can be found in Deliverable
[D4.21].

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
38

4. ORCHESTRATION LAYER DEPLOYMENT

4.1. TeNOR

TeNOR, T-NOVA’s Orchestrator, has adopted micro-services based architecture, in
which the overall features have been split into small and very simple modules, with
well-defined interfaces. Furthermore, these modules communicate between them and
with the remaining external modules through a REST API.

This section describes the script files that have to be executed to install TeNOR, with
the exception of three of those sub-modules, which installation is described in its
own sections:

• The Infrastructure Repository;

• The Service Mapping;

• The Gatekeeper.

4.1.1. Main Installation file

The main installation file is install.sh, shown in Listing 5.

#!/bin/bash
echo "Bundle install of each NS Module"
RAILS_ENV=development
for folder in $(find . -type d -name "orchestrator_ns*"); do
 echo $folder
 cd $folder
 bundle install
 cd ../
done
echo "\nConfigure NS modules"
for folder in $(find . -type d -name "orchestrator_ns*"); do
 echo $folder
 cd $folder
 cp config/config.yml.sample config/config.yml
 [-f config/database.yml.sample] && cp config/database.yml.sample
config/database.yml
 [-f config/mongoid.yml.sample] && cp config/mongoid.yml.sample
config/mongoid.yml
 cd ../
done
echo "Bundle install of each VNF Module"
for folder in $(find . -type d \(-name "orchestrator_vnf*" -o -name
"orchestrator_hot*" \)); do
 echo $folder
 cd $folder
 bundle install
 cd ../
done
echo "\nConfigure VNF modules"
for folder in $(find . -type d \(-name "orchestrator_vnf*" -o -name
"orchestrator_hot*" \)); do

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
39

 echo $folder cd $folder cp config/config.yml.sample
config/config.yml [-f config/mongoid.yml.sample] && cp
config/mongoid.yml.sample config/mongoid.yml
 cd ../
done

Listing 5: TeNOR’s main modules installation (file install.sh).

This is a fairly simple ‘install file’, taking advantage of using a simple convention for
naming the directories where the several micro-services could be found and the tools
associated with the Ruby programming language used in the implementation (i.e.,
the build command in the file).

4.1.2. Cassandra Installation

Cassandra, the column-oriented NoSQL database used to store monitoring data, is
installed by executing file installation_cassandra.sh, shown in Listing 6.

#!/bin/bash
#sudo apt-get install openjdk-7-jre
wget http://apache.forthnet.gr/cassandra/2.2.4/apache-cassandra-2.2.4-
bin.tar.gz
tar -zxvf apache-cassandra-2.2.4-bin.tar.gz
#edit config file
#start_rpc: true => line 445
#rpc_address: 172.16.6.29 => line 475
nano apache-cassandra-2.2.4/conf/cassandra.yaml
#load schema
apache-cassandra-2.2.4/bin/cqlsh localhost 9042 -f ns_schema.txt
#start cassandra
apache-cassandra-2.2.4/bin/cassandra

Listing 6: Installing Cassandra (installation_cassandra.sh).

The first command in Listing 6 is required to install the Java Runtime Environment.

4.1.3. LogStash Installation

LogStash is used for logging all services, and is installed by executing file
installation_logstash.sh, shown in Listing 7.

#!/bin/bash
#sudo apt-get install openjdk-7-jre
wget https://download.elastic.co/logstash/logstash/logstash-1.5.4.tar.gz
tar -zxvf logstash-1.5.4.tar.gz
logstash-1.5.4/bin/logstash agent -f logstash.conf
#elastic search
wget https://download.elastic.co/elasticsearch/elasticsearch/elasticsearch-
1.7.2.tar.gz tar -zxvf elasticsearch-1.7.2.tar.gz
elasticsearch-1.7.2/bin/elasticsearch

Listing 7: Installing LogStash (file installation_logstash.sh).

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
40

4.1.4. MongoDB Installation

MongoDB, the document-oriented NoSQL database is used for storing VNF and NS
Descriptors in JSON, and is installed by executing file installation_mongodb.sh,
shown in Listing 8.

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
41

#!/bin/bash
+-----------------+
| Install MongoDB |
+-----------------+
echo "Started installation of MongoDB"
Import public key
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv EA312927
Create a list file
echo "deb http://repo.mongodb.org/apt/ubuntu trusty/mongodb-org/3.2
multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.2.list
Reload local package database
sudo apt-get update
Install the latest stable version
sudo apt-get install -y mongodb-org
Change MongoDB configuration to accept external connections
sudo sed -i 's/127.0.0.1/0.0.0.0/g' /etc/mongod.conf
+--------------------------------------+
| Disable Transparent Huge Pages (THP) |
+--------------------------------------+
echo "Disabling Transparent Huge Pages (THP)"
echo 'never' | sudo tee /sys/kernel/mm/transparent_hugepage/enabled
echo 'never' | sudo tee /sys/kernel/mm/transparent_hugepage/defrag
Create the init script to disable transparent hugepages (THP)
cat > /tmp/disable-transparent-hugepages << EOF
#!/bin/sh
BEGIN INIT INFO
Provides: disable-transparent-hugepages
Required-Start: $local_fs
Required-Stop:
X-Start-Before: mongod mongodb-mms-automation-agent
Default-Start: 2 3 4 5 # Default-Stop: 0 1 6
Short-Description: Disable Linux transparent huge pages
Description: Disable Linux transparent huge pages, to improve
database performance.
END INIT INFO
case $1 in
 start)
 thp_path=/sys/kernel/mm/transparent_hugepage
 echo 'never' > ${thp_path}/enabled
 echo 'never' > ${thp_path}/defrag
 unset thp_path
 ;;
esac
EOF
Copy the init script to init.d folder
sudo mv /tmp/disable-transparent-hugepages /etc/init.d/disable-transparent-
hugepages
Make it executable
sudo chmod 755 /etc/init.d/disable-transparent-hugepages
Configure Ubuntu to run it on boot
sudo update-rc.d disable-transparent-hugepages defaults
echo "Restarting mongod service"
sudo service mongod restart
echo "Installation completed"

Listing 8: Installing MongoDB (file installation_mongodb.sh).

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
42

4.1.5. Micro-services registration

Executing the file loadModules.sh, shown in Listing 9, configures all TeNOR’s internal
micro-services.

#!/bin/bash
curl -XPOST http://localhost:4000/configs/registerService -H "Content-Type:
application/json" -d '{ "name": "nscatalogue", "host": "localhost",
"port": 4011, "path": "/network-services"}' -H "X-Auth-Token: 504cec46-
54e9-4ab1-8c72-aee9a72e5f36"
curl -XPOST http://localhost:4000/configs/registerService -H "Content-Type:
application/json" -d '{ "name": "nsdvalidator", "host": "localhost",
"port": 4015, "path": "/nsds"}' -H "X-Auth-Token: 504cec46-54e9-4ab1-8c72-
aee9a72e5f36"
curl -XPOST http://localhost:4000/configs/registerService -H "Content-Type:
application/json" -d '{ "name": "nsprovisioning", "host": "localhost",
"port": 4012, "path": "/network-services"}' -H "X-Auth-Token: 504cec46-
54e9-4ab1-8c72-aee9a72e5f36"
curl -XPOST http://localhost:4000/configs/registerService -H "Content-Type:
application/json" -d '{ "name": "nsmonitoring", "host": "localhost",
"port": 4014, "path": "/network-services"}'
curl -XPOST http://localhost:4000/configs/registerService -H "Content-Type:
application/json" -d '{ "name": "vnfmanager", "host": "193.136.92.205",
"port": 4567, "path": "/network-services"}'
#curl -X POST auth.piyush-harsh.info:8000/admin/service/ --header "Content-
Type:application/json" --header "X-Auth-Token:79E9EEF8-FC4B-43FD-B1B2-
4575D92864DC" -d '{"shortname":"vnfdpars","description":"this service parses
the vnf descriptors"}'

Listing 9: Loading micro-services (file loadModules.sh).

In this we take advantage of having a uniform REST API for all micro-services.

4.1.6. Byobu Installation

Byobu, the text-based window manager and terminal multiplexer, used for executing
the various instances of the component in their own terminal. The provided Listing
10. below allows to automatically spawn all the instances at once.

#!/bin/bash
SESSION='nsmanager'
SESSION2='vnfmanager'

-2: forces 256 colors,
byobu-tmux -2 new-session -d -s $SESSION
dev window
byobu-tmux rename-window -t $SESSION:0 'Mgt'
byobu-tmux send-keys "cd orchestrator_ns-manager" C-m
byobu-tmux send-keys "rake start" C-m
byobu-tmux new-window -t $SESSION:1 -n 'Catlg'
byobu-tmux send-keys "cd orchestrator_ns-catalogue" C-m
byobu-tmux send-keys "rake start" C-m
byobu-tmux new-window -t $SESSION:2 -n 'NSDV'
byobu-tmux send-keys "cd orchestrator_nsd-validator" C-m
byobu-tmux send-keys "rake start" C-m
byobu-tmux new-window -t $SESSION:3 -n 'Prov.'
byobu-tmux send-keys "cd orchestrator_ns-provisioner" C-m

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
43

byobu-tmux send-keys "rake start" C-m
byobu-tmux new-window -t $SESSION:4 -n 'Ins.Repo'
byobu-tmux send-keys "cd orchestrator_ns-instance-repository" C-m
byobu-tmux send-keys "rake start" C-m
byobu-tmux new-window -t $SESSION:5 -n 'NSMon'
byobu-tmux send-keys "cd orchestrator_ns-monitoring" C-m
byobu-tmux send-keys "rake start" C-m
byobu-tmux new-window -t $SESSION:6 -n 'NSMon.Repo'
byobu-tmux send-keys "cd orchestrator_ns-monitoring-repository" C-m
byobu-tmux send-keys "rake start" C-m
byobu-tmux new-window -t $SESSION:7 -n 'M-Mon'
byobu-tmux send-keys "cd orchestrator_ns-manager/default/monitoring" C-m
byobu-tmux send-keys "rake start" C-m
byobu-tmux -2 new-session -d -s $SESSION2
byobu-tmux new-window -t $SESSION2:0 -n 'VNFMon'
byobu-tmux send-keys "cd orchestrator_vnf-monitoring" C-m
byobu-tmux send-keys "rake start" C-m
byobu-tmux new-window -t $SESSION2:0 -n 'VNFMon.Repo'
byobu-tmux send-keys "cd orchestrator_vnf-monitoring-repository" C-m
byobu-tmux send-keys "rake start" C-m
Set default window as the dev split plane
byobu-tmux select-window -t $SESSION:0

Listing 10: Setting up all sessions using Byobu.

4.2. Infrastructure Repository

The section describes the initial integration of the Infrastructure Repository
subsystem developed in task 3.2 and documented in deliverable D3.2 with other T-
Nova components, deployed on the T-NOVA testbed hosted by NCSRD.

The Infrastructure Repository is designed to have an EPA Controller per NFVI PoP.
This distributed architecture approach was adopted in order to provide scalability and
performance in a multiple PoP scenario.

The Infrastructure Repository comprises of four primary components:

• PoP Database (1): a single graph database (DB) where the endpoints and the
credentials for the services in each NFVI PoP are stored e.g. Keystone;

• EPA Controller (1-N): one controller per PoP;
• Infrastructure Database (1-N): one graph DB per PoP;
• API Middleware Layer (1-N): one or more API Middleware components to

support scalability.

The flexibility of the infrastructure repository design supports different deployment
scenarios i.e. singular or multiple NFVI-PoP configurations. To support early
integration activities, a single PoP deployment has been realised on the NCSRD
testbed. The deployment includes: one PoP DB, one infrastructure DB, an EPA
Controller and an API Middleware.

To simplify the installation of the infrastructure repository a deployment script was
developed based on a Python implementation:

from distutils.core import setup

setup(name='infrastructure_repo',

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
44

 version='0.1.0',
 description='Datacenter infrastructure repository',
 license='Apache License v2',
 keywords='EPA, Cloud Computing, Datacenter Software',
 url='https://github.com/IntelLabsEurope/infrastructure-repository',
 packages=['api', 'api.occi_epa',
 'api.occi_epa.backends',
 'api.occi_epa.extensions',
 'common', 'infrastructure_repository',
 'monitoring_service', 'monitoring_service.epa_database',
 'monitoring_service.epa_database.openstack'],
 install_requires=['pika', 'py2neo==2.0.7', 'pyssf', 'networkx'],
 scripts=['bin/infrastructure_repo', 'bin/infrastructure_repo_api'],
 maintainer='Giuseppe Petralia',
 maintainer_email='giuseppex.petralia@intel.com',
 classifiers=["Development Status :: 3 - Alpha",
 "License :: OSI Approved :: Apache Software License",
 "Operating System :: OS Independent",
 "Programming Language :: Python",
 "Topic :: Internet",
 "Topic :: Scientific/Engineering",
 "Topic :: Software Development",
 "Topic :: System :: Distributed Computing",
 "Topic :: Utilities",
 "Topic :: System"
],
)

Listing 11 Infrastructure Repository deployment

All the infrastructure repository code is available from Intel Labs Europe’s public
github repository (https://github.com/IntelLabsEurope/infrastructure-repository) as
shown in Figure 24.

Figure 24 Infrastructure Repository on ILE’s Github

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
45

To install the repository the user needs to clone the repository locally and then
execute the following steps:

4.2.1. Prerequisites

The following prerequisites must be installed and functioning before starting the
installation of the infrastructure repository.

• OpenStack Liberty or Kilo release
• OpenDaylight Lithium Release
• Neo4j Database

4.2.2. EPA Controller

This component is responsible for collecting infrastructure related information and
persisting it to a Neo4j DB. Infrastructure related information is collected by listening
to OpenStack notifications, querying the OpenStack service DBs e.g. NOVA and
listening to the agent’s notifications queue (i.e. messages sent by EPA running on the
compute nodes of NFVI PoP to indicate they have sent a data file for processing by
the Controller).

4.2.2.1. EPA Controller Installation

To provide connectivity between the EPA Controller and OpenStack service database
a Python Mysql Connector must be installed. Installation is as follows:
apt-get install python-mysql.connector

In the root directory:

pip install -r requirements.txt
python setup.py install

4.2.2.2. Run EPA Controller

At installation time the EPA configuration file must be configured to set parameters
such as credentials to access to OpenStack services DBs, to connect to RabbitMQ
broker and to access the Neo4J DB as shown in the following extract of the
configuration file:

[OpenstackDB]
host=localhost
nova_db_username=username
nova_db_password=password
...
[RabbitMQ]
rb_name=username
rb_password=password
rb_host=localhost
rb_port=5672

[EpaDB]
epa_url = http://localhost:7474/db/data/
epa_name = username
epa_password = password

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
46

middleware_host_ip = localhost

Listing 12: Extract of the EPA Configuration File

A sample configuration is provided in config/epa_controller.cfg The controller is run
using the following command:

infrastructure_repo -c <path/to/configuration/file>

4.2.3. EPA Agent

An EPA Agent runs on each compute node in an NFVI PoP. The agent is responsible
for collecting information about the compute node where it is running and for
sending that information it to the EPA controller. The agent should be launched after
the Controller is up and running.

4.2.3.1. Installation

Copy the private key of the controller to machine compute where you want to run
the agent. Install hwloc:
apt-get install hwloc

Provide the information required by the agent in the configuration file. A sample
configuration can be found in epa_agent/agent.cfg Install required packages:

pip install pika

4.2.3.2. Run EPA Agent:

python agent.py -c </path/to/the/configuration/file/>

4.2.4. API Middleware

The API middleware component exposes an OCCI compliant interface to consuming
functions which require access to infrastructure related information stored in one or
more the infrastructure repositories (each one called Point of Presence (PoP)).

4.2.4.1. API Middleware Installation

In the root directory:
pip install -r requirements.txt
python setup.py install

4.2.4.2. Running API Middleware Component

Provide required information in a configuration file. A sample is provided in
config/middleware.cfg.

Run the middleware with the following command:

infrastructure_repo_api -c <path/to/configuration/file>

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
47

4.2.4.3. Add a new PoP

To add a new PoP with the same name as the one used in the EPA Controller
configuration file the following call is used
curl -X POST http://<MIDDLEWARE_IP>:<MIDDLEWARE_PORT>/pop/ --header
"Accept: application/occi+json" --header "Content-Type: text/occi" --
header 'Category: pop; scheme="http://schemas.ogf.org/occi/epa#";
class="kind"'

-d 'X-OCCI-Attribute:
occi.epa.pop.graph_db_url="http://usr:password@<NEO4J_IP>:7474/db/data/"
X-OCCI-Attribute:
occi.epa.pop.odl_url="http://<ODL_IP>:8181/restconf/operational/" X-
OCCI-Attribute: occi.epa.pop.odl_name="admin" X-OCCI-Attribute:
occi.epa.pop.odl_password="admin"' X-OCCI-Attribute:
occi.epa.pop.name="GR-ATH-0001"

X-OCCI-Attribute: occi.epa.pop.lat=37.9997104 X-OCCI-Attribute:
occi.epa.pop.lon=23.8168182'

To verify that the PoP has been correctly added to the repository make a GET call
using the following url to see the available PoPs:

http://<MIDDLEWARE_IP>:<MIDDLEWARE_PORT>/pop/

If the installation is successful, the PoP should be included in the list. Copy the PoP ID
and make a GET call to the following url to list the virtual machines currently running
in the PoP and verify that the API Middleware is successfully connected to the
infrastructure DB:

http://<MIDDLEWARE_IP>:<MIDDLEWARE_PORT>/pop/<POP_ID>/vm/

4.2.5. Resolved Issues

During the integration activities on the NCSRD testbed a number of issues were
identified and resolved. The first one was related to integration with the new version
of OpenStack, the Liberty release. The EPA controller queries the OpenStack service
DBs to obtain the information about the virtual resources. The queries were designed
to work with Kilo release. In the Liberty release the number of the DB schemas have
changed. Therefore, queries related to retrieval of information with respect to
Neutron ports, Nova Hypervisors and Heat Stacks were updated.

Another issue related to the fact that the Infrastructure Repository implementation
assumed that the Keystone, Nova, Heat, Glance, Cinder and Neutron services were all
active. In the current T-Nova testbed configuration the Cinder service is not used. For
this reason new configuration parameters have been added to the Controller
configuration file to permit to the PoP administrator to specify which services are
enabled among those supported by the Controller.

4.3. Service Mapping

The Service Mapping package consists of a Rest service written in Ruby language and
one or more solver applications. For the actual deployment in the NCSRD, the chosen
solver is the one developed by Unimi and it consists of a custom C++ application.

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
48

This microservice is distributed as source code and, while the microservice code is
interpreted on the target host by the Ruby interpreter, the C++ side of the
application must be compiled on the target system.

The Service Mapping package has been deployed on a dedicated virtual machine into
the testbed: the service does not need any special hardware requirement, so the basic
m1.small flavor was enough to deploy and run the service. In details, the m1.small
flavor consist of a virtual machine configured with a 1 VCPU, 2 Gigabytes of RAM
memory and 20 Gigabytes of hard disk space.

Being quite a computing-intensive task, allocating more virtual CPU may increase the
performance of the service.

The operating system installed on the virtual machine is Ubuntu 14.04 server.

Finally, the virtual machine has been configured so that it has both a local IP address
and a floating IP address. The latter is not strictly mandatory: it is used for remote
monitoring and updating during the test phase by logging in using tool such as
PuTTY or a ssh shell.

Since different tasks are required to install the microservice on a vanilla environment,
an install script has been developed to ease the installation process. The installer will
be discussed later in this section while now the manual installation steps will be
illustrated.

4.3.1. Manual Installation

After obtaining the code - whether by cloning the Service Mapper repository or by
manually decompressing and copying the code archive - and copying it to a proper
directory located into the home folder of the local user (from now we assume that
the folder is "/home/servmapping/TeNOR-mapper"), the first step is to invoke the
apt-get updater:

sudo apt-get update

This command synchronizes the local index of software packages from their sources.

Next step is to download and install the packages need by the microservice. Again,
apt-get will automatically solve the dependencies by using the command:

sudo apt-get install -y make g++ ruby bundler zlib1g zlib1g-devp

The package "make" is a tool which controls the generation of executables and other
non-source files of a program from the program's source files. It used during the
compilation of the custom C++ application.

The package "g++" and all the associated tools and libraries (including GCC) is a C++
(and other languages as well) compiler and linker which builds the custom
application C++ source code into object code and then links the latter into an
executable program.

The package "ruby" and all the associated tools is a package which contains an
interpreter, the development tools and all the related libraries/tools for the Ruby
programming language. This software is used for the execution of the Rest service
and the Thin web server.

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
49

The package "bundle" or "bundler" is a package whose function is to manage gem
dependencies for the Ruby application so that eventual gems and all child
dependencies specified in this manifest of Ruby application are automatically fetched,
downloaded, and installed.

The packages zlib1g and zlib1g-devp are packages that contains zlib, a software
library used for data compression. It solves a dependency during the compilation of
the "nokogiri" Ruby gem.

After that, the next step is to solve all the Ruby gem dependencies for the Service
Mapper Rest service. The package "Bundler" automatically solve this issue by
downloading and configuring all the gems specified in the Service Mapper Rest
service manifest file.

By moving to the Service Mapper application folder with:

cd /home/servmapping/TeNOR-mapper

and invoking Bundler with:

sudo bundle update

The following gems are downloaded, installed and configured:

Listing 13: Ruby gems required for the Service Mapper module installation

The following step is to install the GLPK package, and this operation may not be
mandatory if the GLPK are already present on the host virtual machine.

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
50

Due to different licensing, this package cannot be embedded into the TeNOR Service
Mapper code repository and its package source code is required to be manually
downloaded from the official GLPK site. This can be done by using the wget utility:

cd ~
wget http://ftp.gnu.org/gnu/glpk/glpk-4.55.tar.gz
tar xvf glpk-4.55.tar.gz

and by using the tar utility to extract the GLPK source code file from the GLPK tar.gz
archive.

Compiling and installing the GLPK library is straight-forward since the included
configuration script and the makefile automatizes this process. By typing:

cd glpk-4.55
mkdir build
cd build
../configure
make
sudo make install
sudo ldconfig

the "libglpk.a" library is compiled and copied into the "/usr/local/lib" directory, and
the include file "glpk.h" is copied in the "/usr/local/include" directory.

Finally, the command "ldconfig" updates the necessary links and cache to the most
recent shared libraries found in the host virtual machine library directories.

Last step is to compile the custom C++ application package. A makefile has been
provided as well, to ease this last operation.

By typing:

cd ~/TeNOR-Mapper/bin
make

the application will be compiled.

Listing 14: Compiling the jsonConverter and solver applications

At the end of this step, the binary applications "jsonConverter" and “solver” will be
created into the TeNOR-Mapper/bin folder.

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
51

The provided makefile will also clean the TeNOR-Mapper/bin directory from the
compiled applications and intermediate object files with the command:

make clean

Also, the handy script clear_workspace.sh will delete old temporary work files from
the TeNOR-Mapper/bin/workspace directory.

4.3.2. Automatic Installation

As mentioned earlier, an installer script is provided with the source code and
automatizes the process hereby described, with the only exception of the GLPK
libraries; the script does not download neither installs this package, but it only checks
its availability on the host virtual machine. Therefore, this package must already be
present (compiled and installed) on the host virtual machine before launching the
installer script; however, if the installer fails to find the GLPK library on the system, the
user can proceed with all the other installation steps (update of the apt-get cache,
download of the other packages,creation of the "~/TeNOR-Mapper" directory, copy
of the files, download and update of the Ruby gems) with the exception of the
compilation of the C++ app, since it will most probably fail.

By default, the script installs the Service Mapper into the "~/TeNOR-Mapper"
directory.

The installer script is started by typing:

./install.sh

Administration privileges may be necessary and queried as required.

At the end of the process, user will be greeted with the message:

Listing 15. Message on successful automated installation of the Service Mapper module

4.3.3. Service Mapper module configuration

The Service Mapper module does not require additional configuration, and it works
out of the box. A few other optional steps may be required for custom configuration:
as default, the service listens to the port 4042, but it can be changed by editing the
"~/TeNOR-Mapper/config/config.yml" file.

Default route is "http://localhost:4042/mapper", and this can be changed by
modifying the "~/TeNOR-Mapper/routes/sm-unimi.rb" file.

Optional parameters - such as multi-threading - can be passed to the Thin webserver
by changing the "~/TeNOR-Mapper/Rakefile" configuration file.

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
52

4.3.4. Starting and stopping the Service Mapper module

The service is launched along with all the other TENoR services. However, it is
possible to manually start the only Service Mapper by moving to the directory
"~/TeNOR-Mapper" and typing:

rake start

The module can be stopped anytime, by pressing Control-C.

An extended description of the Service Mapper module can be found in Deliverable X
[ref].

4.4. Gatekeeper

The Gatekeeper micro-service has been written in Go programming language. In
order to deploy this service in the Athens T-NOVA Pilot, a VM of flavor m1.small was
used in their OpenStack testbed. The service deployment is a straightforward process
due to the fact that an installation script has been provided with the distribution. The
steps that were followed were:

1. connect to the pilot environment using VPN

2. login to the gatekeeper VM

3. download the installation script from the T-NOVA code repositories5

4. execute the script

The script sets up the Go runtime, environment variables as well as recommended
code dependencies in the VM.

Figure 25 Go runtime, environment and dependencies deployment

The configuration parameters that need to be configured before starting the service
are shown below.

5 https://github.com/T-NOVA

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
53

Listing 16 Gatekeeper Configuration

As shown in the configuration snippet above (Listing 16), the service runs on port
8000 and can be accessed by other T-NOVA services at this port using the floating IP
assigned to this VM. Upon startup, the service performs a quick sanity checks and
once DB integrity is verified it starts listening on the configured port for clients’
requests.

Figure 26 Gatekeeper started and listening for requests

The details on how to use the service properly can be found in the T-NOVA
Deliverable: Orchestrator Interfaces deliverable [D3.31].

4.4.1. Expression Solver (assurance formula evaluator)

T-NOVA orchestrator needs to continually evaluate the agreed SLA for any possible
violations for all the deployed network services (NS). The agreed assurance formula is
included in the NSD file which needs to be parsed, and evaluated with the actual
component VNF’s real-time monitored metrics. This micro-service provides REST APIs
for the orchestrator to quickly evaluate any well formed assurance formula. The
service is developed in Java using Jersey REST framework. The installation of this
micro-service is straightforward as the installation and deployment scripts are
included in the T-NOVA code repositories along with the source code. This service is
co-located in the same VM as the Gatekeeper service. The installation steps involved
were -

1. connect to the pilot environment through vpn

2. login to the gatekeeper VM (service was co-located with Gatekeeper)

3. download the installation scripts for exp-eval service from T-NOVA GIT repos

4. execute the script and follow the prompts

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
54

The configuration file parameters are self explanatory. Since the service has been
collocated with Gatekeeper service, port 8888 was used while deploying.

Listing 17 Expression Solver configuration file

The service when started performs a quick sanity check and upon successful check
starts to listen on the configured port for clients’ REST requests.

Figure 27 Excerpt from Expression Solver log

Quick check using curl confirms that the service was deployed successfully.

Figure 28 Validation of the service deployment

The API guide for this service can be found in the T-NOVA internal wiki as well as in
the upcoming WP3 Orchestrator deliverable D3.41.

As a result of the integration effort the following services deployment was achieved
(Table 6):

Table 6 Gatekeeper Components

TNova Service Floating IP Port Deployed? Base-URI

Gatekeeper 10.10.1.63 8000 Yes /

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
55

Expression Solver 10.10.1.63 8888 Yes /exp-eval/

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
56

5. MARKETPLACE AND NF STORE DEPLOYMENT

5.1. NF Store

The Network Function Store has been written in Java programming language as a
web application running on TomEE server, a tomcat server with java EE extensions.

In order to deploy the service on T-NOVA testbed hosted by NCSRD, a preliminary
build of the project is needed.

The code is available into i2cat stash git repository https://github.com/T-NOVA/NFS.

The build produces an rpm that can be installed on server and then the NFStore will
be available as a standard Linux SysVinit service.

5.1.1. Build NF Store

• Operation System

The NFStore build does not require a particular type of OS as the application and
the server are realized in Java and the build will be done using Java Virtual
Machine.

• Prerequisites

The following prerequisites must be installed and available before starting the
build of the NF Store:

o java virtual machine (1.8 version)
o ant
o git client

1. Clone NFS repository

git clone http://[i2cat_username]@stash.i2cat.net/scm/TNOV/wp5.git

2. Compile NF Store

$ cd wp5/WP5/NFS
$ ant
Buildfile: D:\WorkspaceGIT\wp5\WP5\NFS\build.xml
clean:
 [delete] Deleting directory D:\WorkspaceGIT\wp5\WP5\NFS\build
 [delete] Deleting directory D:\WorkspaceGIT\wp5\WP5\NFS\dist
init:
 [mkdir] Created dir: D:\WorkspaceGIT\wp5\WP5\NFS\build\classes\META-INF
 [mkdir] Created dir: D:\WorkspaceGIT\wp5\WP5\NFS\dist\var\db
 [mkdir] Created dir: D:\WorkspaceGIT\wp5\WP5\NFS\dist\var\log
 [mkdir] Created dir: D:\WorkspaceGIT\wp5\WP5\NFS\dist\var\run
 [mkdir] Created dir: D:\WorkspaceGIT\wp5\WP5\NFS\dist\var\tmp
 [mkdir] Created dir: D:\WorkspaceGIT\wp5\WP5\NFS\dist\certs
server:
 [unzip] Expanding: D:\WorkspaceGIT\wp5\WP5\NFS\server\apache-tomee-1.7.1-

plus.zip into D:\WorkspaceGIT\wp5\WP5\NFS\dist
 [copy] Copying 8 files to D:\WorkspaceGIT\wp5\WP5\NFS\dist\apache-tomee-plus-

1.7.1\lib
 [copy] Copying 6 files to D:\WorkspaceGIT\wp5\WP5\NFS\dist\apache-tomee-plus-

1.7.1\conf

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
57

 [copy] Copying 4 files to D:\WorkspaceGIT\wp5\WP5\NFS\dist\certs
 [copy] Copied 1 empty directory to 1 empty directory under

D:\WorkspaceGIT\wp5\WP5\NFS\dist\certs
build:
 [echo] NFS: D:\WorkspaceGIT\wp5\WP5\NFS\build.xml
 [javac] Compiling 61 source files to D:\WorkspaceGIT\wp5\WP5\NFS\build\classes
 [javac] warning: Supported source version 'RELEASE_6' from annotation processor

'org.apache.openjpa.persistence.meta.AnnotationProcessor6' less than -source
'1.7'

 [javac] 1 warning
war:
 [war] Building war: D:\WorkspaceGIT\wp5\WP5\NFS\prod\war\NFS.war
 [copy] Copying 1 file to D:\WorkspaceGIT\wp5\WP5\NFS\dist\apache-tomee-plus-

1.7.1\webapps
rpm:
[build-rpm] Created rpm: nfs-1.0-0.noarch.rpm
BUILD SUCCESSFUL
Total time: 31 seconds

Listing 18 NF Store build command output

Now the rpm file to be deployed is available:

$ cd prod/rpms
$ ls *.rpm
nfs-1.0-0.noarch.rpm

5.1.2. Deploy NF Store

• Operation System

If the NF Store is deployed as a standard Linux SysVinit service then a host with Linux
OS is necessary.

• Prerequisites

The following prerequisites must be installed and available before installation of the
NFStore.

o java virtual machine (1.8 version)
o rpm

1. Install built rpm (see previous steps)

$ ls *.rpm
nfs-1.0-0.noarch.rpm
$ rpm -i nfs-1.0-0.noarch.rpm
$ rpm -qa nfs
nfs-1.0-0.noarch

2. Verify installation - You can check that the rpm is installed by querying rpm and
also checking that TomEE server is installed:

$ rpm -qa nfs
nfs-1.0-0.noarch
$ ls /usr/local/nfs
apache-tomee-plus-1.7.1 bin certs var

3. Customize NF Store configuration

The default configuration of NFStore is illustrated in Table 7:

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
58

Table 7 NF Store Configuration

Variable name Default value Description

NFS_STORE_PATH /usr/local/store local store directory

NFS_URL https://api.t-nova.eu/NFS NFStore URL used for set image
links

ORCHESTRATOR_URL https://api.t-nova.eu/orchestrator orchestrator URL

TOMCAT_PROTOCOL https NFStore protocol

TOMCAT_IP 0.0.0.0 NFStore address

TOMCAT_HTTP_PORT 80 NFStore port when protocol is http

TOMCAT_HTTPS_PORT 443 NFStore port when protocol is https

The default values can be changed by setting the required values into the file
/usr/local/nfs/bin/nfs.conf before starting the server.

This file already contains commented the default configuration for all listed variables
so, if needed, uncomment and set the required values before starting the service, as
shown in the following example:

#! /bin/bash

optional variable configuration to override default values
uncomment and set required values before start nfs service

#------ monitor log level
LOG_LEVEL=notice

#------ store path
NFS_STORE_PATH=/usr/local/store

#------ tomcat interface
TOMCAT_PROTOCOL=http
TOMCAT_IP=0.0.0.0
TOMCAT_HTTP_PORT=8080
TOMCAT_HTTPS_PORT=8443

#------ url
ORCHESTRATOR_URL=http://193.136.92.205:4567/vnfs
NFS_URL=http://83.212.108.105:8080/NFS

Listing 19 NF Store Configuration File

5.1.3. Start NF Store

$ service nfs start
Starting nfs (via systemctl): [OK]

The NFStore status can be checked using service command:

$ service nfs status
nfsMonitor active: pid 29890
tomcat active: pid 29924
tomcat manager status: running

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
59

nfs app status: running

The service can be restarted or stopped using again service command:

$ service nfs restart
Restarting nfs (via systemctl): [OK]
$
$ service nfs stop
Stopping nfs (via systemctl): [OK]
$ service nfs status
nfsMonitor not active
tomcat not active

To configure the NFStore service to restart automatically on system reboot, add these
links into run level directory used by the server (run level 3 for the following
example):

$ cd /etc/rc3.d
$ ln -s /etc/init.d/nfs S99nfs
$ ln -s /etc/init.d/nfs K99nfs

5.2. Marketplace

5.2.1. Prerequisites

o Operation System

Marketplace supports multiple Linux distributions that support Docker. Currently
Marketplace has been deployed and tested for Docker version in Ubuntu Trusty 14.04
Ubuntu Linux.

5.2.1.1. Installing Docker on Ubuntu

Docker requires the package apt-transport-https to be installed. This is included in
the default Ubuntu-14.04 build.

Before you install Docker, you will need to add the Docker repository key to your
keychain:

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys
36A1D7869245C8950F966E92D8576A8BA88D21E9

You should see a response similar to this:

Executing: gpg --ignore-time-conflict --no-options --no-default-keyring --
homedir /tmp/tmp.tNUh5zx96p --no-auto-check-trustdb --trust-model always -
-keyring /etc/apt/trusted.gpg --primary-keyring /etc/apt/trusted.gpg --
keyserver hkp://keyserver.ubuntu.com:80 --recv-keys
36A1D7869245C8950F966E92D8576A8BA88D21E9

gpg: requesting key A88D21E9 from hkp server keyserver.ubuntu.com
gpg: key A88D21E9: public key "Docker Release Tool (releasedocker)

<docker@dotcloud.com>" imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)

Listing 20 Apt repository GPG key installation

Next, update and install the lxc-docker package:

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
60

sudo sh -c "echo deb https://get.docker.com/ubuntu docker main >
/etc/apt/sources.list.d/docker.list"

sudo apt-get update
sudo apt-get install lxc-docker

Finally, test that Docker is working properly by using the following command:

sudo docker run -i -t ubuntu /bin/bash

5.2.1.2. Docker Compose

Docker Compose is an orchestration tool that automates the build of multi-container
applications. With Compose, you define your application’s components (containers,
configurations, links, volumes) in a single file, then you can build your application
with a single command that does everything that needs to be done to get your
application running. Compose is great for development, testing and staging
environments.

Using Compose is basically a three-step process:

• Define your applications environment with a Dockerfile so it can be
reproduced anywhere.

• Define the services that make up your application in docker-compose.yml so
they can be run together in an isolated environment.

• Run docker-compose up and Compose will start and run your entire
application.

The Marketplace’s docker-compose.yml is illustrated in Listing 21:

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
61

Listing 21 Docker composition configuration file

In order to Install Docker Compose we follow the steps below:

o Install pip

Pip is a tool for installing Python packages.

sudo apt-get install python-pip python-dev build-essential
sudo pip install --upgrade pip

o Install Compose using pip

Compose can be installed from pypi using pip. If you install using pip it is highly
recommended that you use a virtualenv because many operating systems have
python system packages that conflict with docker-compose dependencies. Note: pip
version 6.0 or greater is required.

sudo pip install docker-compose

5.2.2. Marketplace Deployment

Step 1 - Clone marketplace repository

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
62

Download the Marketplace source code by cloning it from the repository:

$ cd ~
$ git clone http://[i2cat_username]@stash.i2cat.net/scm/TNOV/wp6.git
$ cd wp6/marketplace

Step 2 – Build Cyclops base image

Because of the high number of dependencies need to build the cyclops-base
separately. The cyclops image depends on ubuntu:14.04 standard docker image.

$ sudo docker build -t cyclops-base cyclops/docker-files/cyclops-base/.

Step 3 – Build Marketplace

Once the cyclops-base image is created, then proceed to build the application by
running the docker-compose build command.

$ sudo docker-compose up

Step 4 – Add the marketplace domain to hosts file

The marketplace works only by visiting the domain marketplace.t-nova.eu, so you
need to add this domain to hosts file in order to server the local instance of
marketplace.

sudo echo "127.0.0.1 marketplace.t-nova.eu" >> /etc/hosts

Step 5 – Access Marketplace

Visit http://marketplace.t-nova.eu to ensure the deployment was successful.

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
63

6. OVERVIEW OF T-NOVA DEPLOYMENT

This section presents a visual overview of the T-NOVA deployed components as is
currently available in Athens Pilot infrastructure. In addition is provides an overview
of a T-NOVA tenant (customer of the SP) and a plausible deployment scenario of
Network Services and VNFs.

In order to co-host the actual T-NOVA components in the same infrastructure with
the actual NS components we choose to reuse the same infrastructure. Although in
reality this might not be a proper selection especially in a production environment, it
is imposed by the availability of IT resources of the Pilot and the scale of
infrastructure hosted.

In order to isolate the components, a separate tenant is used for the deployment of
T-NOVA Orchestration, Marketplace and VIM/WICM components. Figure 29
illustrates the deployment of these components as visualised by the Openstack
Dashboard.

Figure 29 Component network topology

The orange dashed circle denotes the VMs that host the T-NOVA deployed
components. The rest icons denote, example VNF deployments and a number of
virtual networks used for their deployment.

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
64

A second, dedicated tenant account (corresponding to a T-NOVA customer tenant) is
used by the VNF developers during the integration of T-NOVA in Athens pilot to
deploy NFV service components.

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
65

7. CONCLUSIONS

The present deliverable served the purpose of a technical report accompanying the
prototype deliverable i.e. the early version of the T-NOVA pilot. It can be also used as
a technical guide for deploying all of part of the T-NOVA system.

At present, all components and subsystems of the T-NOVA architecture (in their
current versions) have been deployed and integrated in the primary pilot testbed in
NCSRD premises in Athens. Currently, all partners are engaged in an iterative
continuous integration procedure, in which updated versions of the modules are
integrated into the testbed and validated.

As soon as the pilot reaches an acceptable maturity level, most of the components
will also be deployed to the rest pilots and inter-pilot scenarios will be experimented
upon. These advances will be included in the second edition of this deliverable
(D2.52).

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
66

8. REFERENCES

[cacti] Cacti: the complete rrdtool graphing solution. On-line: http://www.cacti.net

[D2.51] G. Xilouris (ed.) et al, “Deliverable 2.51 - Planning of trials and evaluation –
Interim”, T-NOVA Project,

[D2.52] G. Xilouris (ed.) et al, “Deliverable 2.52 - Planning of trials and evaluation –
Final”, T-NOVA Project,

[D3.1] J. Bonnet (ed.) et al, “Deliverable 3.1 - Orchestrator Interfaces”, T-NOVA
Project, Sep. 2015

[D3.2] M. McGrath (ed.) et al, “Deliverable 3.2 - Infrastructure Resource Repository”,
T-NOVA Project, Jul 2015.

[D3.3] Deliverable 3.3-Service Mapping”, T-NOVA Project, Dec 2015.

[D3.41] Deliverable 3.41 - Service Provisioning, Management and Monitoring –
Interim”, T-NOVA Project, Dec 2015

[D4.1] M. McGrath (ed.) et al, “Deliverable 4.1 - Resource Virtualisation”, T-NOVA
Project, September 2015.

[D4.21] L. Zuccaro (ed.) et al, “Deliverable 4.21 - SDN Control Plane Interim”, T-
NOVA Project, November 2015.

[D4.31] I. Trajkovska (ed.) et al, “Deliverable 4.31 - SDK for SDN Interim”, T-NOVA
Project, September 2015.

[D4.41] G. Gardikis (ed.) et al, “Deliverable 4.41 - Monitoring and Maintenance –
Interim”, T-NOVA Project, November 2015.

[D4.51] E. Trouva (ed.) et al, “Deliverable 4.51 - Infrastructure Integration and
Deployment - Interim, T-NOVA Project, December 2015.

[D5.1] N. Herbaut (ed.) et al, “Deliverable 5.1- Function Store”, T-NOVA Project,

[D5.31] P. Paglierani (ed.) et al, “Deliverable 5.31 - Network Functions
Implementation and Testing”, T-NOVA Project, Nov. 2015.

[D6.1] A. Rammos (ed.) et al, “D6.1-Service Description Framework”, T-NOVA
Project, Dec 2015.

[D6.2] E. Markakis (ed.) et al, “Deliverable 6.2-Brokerage Module”, T-NOVA Project,
Dec. 2015.

[D6.3] E. Markakis (ed.) et al, “Deliverable 6.31-User Dashboard”, T-NOVA Project,
Dec. 2015.

[D6.4] A. Ramos (ed.) et al, “Deliverable 6.41-SLAs and Billing”, T-NOVA Project,
Dec 2015.

[Docker] Docker, on-line: https://www.docker.com

[NFS] Network File System, on-line: http://nfs.sourceforge.net

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
67

[ODL] OpenDayLight, on-line: http://opendaylight.org

[Openstack] Openstack, on-line: https://www.docker.com

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
68

9. LIST OF ACRONYMS

Acronym Explanation

CIFS Common Internet File System

CPE Customer Premises Equipment

COTS Commercial of the shelf

FPGA Field-programmable gate array

GRE Generic Routing Encapsulation

IOMMU I/O memory management unit

HDFS Hadoop Distributed File System

LRDIMM Load Reduced DIMM

LXC Linux Containers

MD-SAL Model-driven Service Abstraction Layer

ML2 Modular Layer 2

MM Monitoring Manager

MVC Model-View-Controller

NIC Network Interface Controller

NFS Network File System

NTP Network Time Protocol

NUMA Non-Uniform Memory Access

QPI QuickPath Interconnect

ODL OpenDaylight

OVS Open vSwitch

PF Physical Function

PCIe PCI Express

POC Proof of Concept

PXE Preboot Execution Environment

RID PCI Express Requestor ID

RDIMM Registered Dual in-line Memory Module

RADOS Reliable Autonomic Distributed Object Store

REST Representational State Transfer

RPC Remote Procedure Call

T-NOVA | Deliverable D7.1 Early Pilot Site Deployment

© T-NOVA Consortium
69

SDK4SDN Software Development Kit for Software Defined Networking

SFC Service Function Chaining

SMB Server Message Block

SR-IOV Single Root I/O Virtualisation

TFTP Trivial File Transfer Protocol

UDIMM Unegistered Dual in-line Memory Module

vHG Virtual Home Gateway

vPxaaS Virtual Proxy as a Service

vSA Virtual Security Appliance

vSBC Virtual Session Border Controller

vTC Virtual Transcoding Unit

VXLAN Virtual Extensible LAN

